An anonymous reader writes: On Wednesday, Google DeepMind announced two new AI models designed to control robots: Gemini Robotics and Gemini Robotics-ER. The company claims these models will help robots of many shapes and sizes understand and interact with the physical world more effectively and delicately than previous systems, paving the way for applications such as humanoid robot assistants. [...] Google's new models build upon its Gemini 2.0 large language model foundation, adding capabilities specifically for robotic applications. Gemini Robotics includes what Google calls "vision-language-action" (VLA) abilities, allowing it to process visual information, understand language commands, and generate physical movements. By contrast, Gemini Robotics-ER focuses on "embodied reasoning" with enhanced spatial understanding, letting roboticists connect it to their existing robot control systems. For example, with Gemini Robotics, you can ask a robot to "pick up the banana and put it in the basket," and it will use a camera view of the scene to recognize the banana, guiding a robotic arm to perform the action successfully. Or you might say, "fold an origami fox," and it will use its knowledge of origami and how to fold paper carefully to perform the task.
In 2023, we covered Google's RT-2, which represented a notable step toward more generalized robotic capabilities by using Internet data to help robots understand language commands and adapt to new scenarios, then doubling performance on unseen tasks compared to its predecessor. Two years later, Gemini Robotics appears to have made another substantial leap forward, not just in understanding what to do but in executing complex physical manipulations that RT-2 explicitly couldn't handle. While RT-2 was limited to repurposing physical movements it had already practiced, Gemini Robotics reportedly demonstrates significantly enhanced dexterity that enables previously impossible tasks like origami folding and packing snacks into Zip-loc bags. This shift from robots that just understand commands to robots that can perform delicate physical tasks suggests DeepMind may have started solving one of robotics' biggest challenges: getting robots to turn their "knowledge" into careful, precise movements in the real world.
According to DeepMind, the new Gemini Robotics system demonstrates much stronger generalization, or the ability to perform novel tasks that it was not specifically trained to do, compared to its previous AI models. In its announcement, the company claims Gemini Robotics "more than doubles performance on a comprehensive generalization benchmark compared to other state-of-the-art vision-language-action models." Generalization matters because robots that can adapt to new scenarios without specific training for each situation could one day work in unpredictable real-world environments. [...] Google is attempting to make the real thing: a generalist robot brain. With that goal in mind, the company announced a partnership with Austin, Texas-based Apptronik to"build the next generation of humanoid robots with Gemini 2.0." While trained primarily on a bimanual robot platform called ALOHA 2, Google states that Gemini Robotics can control different robot types, from research-oriented Franka robotic arms to more complex humanoid systems like Apptronik's Apollo robot.