Become a fan of Slashdot on Facebook

 



Forgot your password?
typodupeerror
×

Comment Re:They are assholes (Score 1) 1435

So you are in favor of violating an explicitly stated amendment.

I believe the 2nd Amendment may be applying to the Militia's, "right of the people to keep and bear arms"... The government should expect that its citizens will come if there were any doubt that the Armed Forces couldn't scale to the situation .. ("To provide for the calling forth the MILITIA to execute the Laws of the Union, suppress Insurrection and repel Invasions." Article 1, Section 8, Clause 16) If you ask me, this one of the LEAST explicit statements. Considering the difference in the connotations and definitions of words in the last ~250 years, the 2nd Amendment {and in fact a lot of the Constitution} may be open to interpretation http://www.godseesyou.com/2nd_well_regulated_militia.html

Security

Submission + - Has my bank been hacked and how would I know?

An anonymous reader writes: So I receive a very specific bank email hoax about 'logging in and checking my security' which has my new email address not listed anywhere (and a gaelic name not easy to generate) which directs me to a Russian site to 'log in'. My bank — Westpac in Australia has a long history of poor IT upkeep and ongoing issues are always in the media — How would I know if this is a random email or if my details have been taken from one of their compromised servers? It's awfully specific and the only hoax email I've ever had just happens to be for my particular institution with my full name (not my reply name on my email). Am I likely to ever know if the bank compromised my security?
Encryption

Submission + - Everyday Cryptography

benrothke writes: "Untitled documentol{margin:0;padding:0}.c5{max-width:468pt;background-color:#ffffff;padding:72pt 72pt 72pt 72pt}.c0{text-align:justify;direction:ltr}.c2{color:#1155cc;text-decoration:underline}.c3{color:inherit;text-decoration:inherit}.c4{font-style:italic}.c1{font-size:12pt}.title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt}li{color:#000000;font-size:11pt;font-family:"Arial"}p{color:#000000;font-size:11pt;margin:0;font-family:"Arial"}h1{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}h2{padding-top:18pt;line-height:1.15;text-align:left;color:#000000;font-size:14pt;font-family:"Arial";font-weight:bold;padding-bottom:4pt}h3{padding-top:14pt;line-height:1.15;text-align:left;color:#666666;font-size:12pt;font-family:"Arial";font-weight:bold;padding-bottom:4pt}h4{padding-top:12pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:2pt}h5{padding-top:11pt;line-height:1.15;text-align:left;color:#666666;font-size:10pt;font-family:"Arial";font-weight:bold;padding-bottom:2pt}h6{padding-top:10pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:2pt}

When Bruce Schneier first published Applied Cryptographyin 1994, it was a watershed event, given that is was one of the first comprehensive texts on the topic that existed outside of the military.



In the nearly 20 years since the book came out, a lot has changed in the world of encryption and cryptography. A number of books have been written to fill that gap and Everyday Cryptography: Fundamental Principles and Applicationsis one of them that have recently been published.



While the title Everyday Cryptographymay give the impression that this is an introductory text; that is not the case. Author Keith Martin is the director of the information security group at Royal Holloway, a division of the University of London, and the book is meant for information security professionals in addition to being used as a main reference for a principles of cryptography course. The book is also a great reference for those studying for the CISSP exam.



While the book notes that almost no prior knowledge of mathematics is required since the book deliberately avoids the details of the mathematical techniques underpinning cryptographic mechanisms. That might be a bit of a misnomer as the book does get into the mathematics of cryptography. While the mathematics in the book is not overwhelming, they are certainly not underwhelming. For those that want a deeper look, the book includes an appendix for many of the mathematical concepts detailed in the book.



Two benefits of the book are that it stresses practical aspects of cryptography and real-world scenarios. The mathematics detailed avoids number throaty with a focus on practicability. It also shows how cryptography is used as the underlying technology behind information security, rather than simply focusing on the abstracts of the potential of cryptography.



With that, the books 13 (made up of 4 parts) chapters provide a comprehensive overview of the theory and practice around all as aspects of contemporary cryptography. Each of the chapters end with a summary, detailed lists of items for further reading, and sets of penetration questions that challenge the reader. Readers are advised to spend time on these questions as it is often easy for the reader to feel that they understand the material. The questions can quickly humble the reader and show them that it may not be the case.



Part 1 is titled Setting the Sceneand provides a comprehensive introduction to the fundamental of cryptography. Chapter 1 (freely available here) details the basic principles about cryptography and provides a high-level introduction.



Chapter 2 provides a good overview of the history of cryptography. It details a number of obsolete, yet historically relevant ciphers, such as the Vigenère cipher from the 1500's, to the Playfair cipher from the mid-1800's and others. Martin provides a good overview of the cryptanalysis of the Vigenère cipher and lessons learned from it.



Chapters 4-9 comprise part 2, and provide a thorough overview of the various forms of encryption (symmetric and asymmetric) and digital signatures. This section gets into some of the deeper mathematics of cryptography. While the author states that almost no prior knowledge of mathematics is needed; those without a background will surely be confused by some of the material.



Chapter 7 closes with a good overview of the relationship between digital signatures and handwritten signatures. The author notes the importance of resisting any temptation to consider digital signatures as a direct electronic equivalentof handwritten signatures. He then provides a detailed outline of the environmental, security, practical and flexibility differences between them.



Key management is one of the most important aspects of cryptography and often the most difficult to execute on. Part of the difficulty around key management is at the user level, with key updates, passphrase management and more. Ultimately, effective key management is essential to the underlying security of the cryptosystem. The 2 chapters in part 3 provide a thorough synopsis of the fundamentals of key management.



Part 4 closes the book with two chapters on practical cryptographic applications. Chapter 12 details how cryptography can be used on the internet, secure payment cards, video broadcasting and more.



The book concludes with an appendix on the mathematics of cryptography, which takes a look at the basic mathematical concepts the underlie some of the material in the book.



This book is not for the fainthearted and is not an introductory text on the topic. It is meant for the advanced reader or someone taking a college level course. For such a reader serious about a significant overview of the essentials on the topic, Everyday Cryptography: Fundamental Principles and Applicationsis an excellent reference.







Ben Rothkeis the author of Computer Security: 20 Things Every Employee Should Know."

Submission + - Blackhole's 'point of no return' found (harvard.edu) 1

dsinc writes: Using a continent-spanning telescope, an international team of astronomers has peered to the edge of a black hole at the center of a distant galaxy. For the first time, they have measured the black hole’s “point of no return” — the closest distance that matter can approach before being irretrievably pulled into the black hole.

According to Einstein’s theory of general relativity, a black hole’s mass and spin determine how close material can orbit before becoming unstable and falling in toward the event horizon. The team was able to measure this innermost stable orbit and found that it’s only 5.5 times the size of the black hole’s event horizon. This size suggests that the accretion disk is spinning in the same direction as the black hole.
The observations were made by linking together radio telescopes in Hawaii, Arizona, and California to create a virtual telescope called the Event Horizon Telescope, or EHT. The EHT is capable of seeing details 2,000 times finer than the Hubble Space Telescope.

The Matrix

Submission + - Is the Universe a Simulation? (phys.org) 2

olsmeister writes: Ever wonder if the universe is really a simulation? Well, physicists do too. Recently, a group of physicists have devised a way that could conceivably prove one way or the other whether that is the case. There is a paper describing their work on arXiv. Some other physicists propose that the universe is actually a giant hologram with all the action actually occurring on a two-dimensional boundary region.

Slashdot Top Deals

Modeling paged and segmented memories is tricky business. -- P.J. Denning

Working...