Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!

 



Forgot your password?
typodupeerror

Comment Re:It doesn't work at scale (Score 1) 34

Fortunately, we have you -- a knowledgeable human, who can propose the right points!

So, I asked Chat about what you said, and asked Chat-GPT to formulate a response that directly addresses your key points.
Let me know if it reads like randomly extruded text, or if it has relevance to your understanding and argument:

---
The Campi Flegrei project you’re describing was a natural hydrothermal system, not an engineered superhot-rock (SHR) system, and that distinction matters for both the chemistry and the physics.

A hydrothermal reservoir taps naturally circulating volcanic brine. Its fluid chemistry is whatever the rock has been stewing in for centuries: arsenic, boron, mercury, dissolved metals, HS, etc. The industry learned long ago that natural brines often destroy turbines, foul condensers, and require scrubbing that wipes out the thermodynamic efficiency. Those problems are real, and your experience confirms them.

Superhot-rock geothermal is a different class of project. It does not rely on natural brines, natural permeability, or natural aquifers. SHR / modern EGS systems:

Bring their own working fluid (usually treated water in a closed or semi-closed loop),

Create engineered fracture networks rather than using natural ones,

Operate in a supercritical regime (>374C, high pressure) where heat transport is dominated by convective sweep rather than slow conduction, and

Are sited where mantle heat flux is extremely high (e.g., Newberry), not just where water has accumulated in shallow formations.

The key point is that the problems you encountered at Campi Flegrei — toxic brine chemistry, turbine contamination, and power losses from scrubbing — are specific to hydrothermal geology, not to engineered SHR systems. SHR avoids most of that simply because it doesn’t use the volcanic soup; it uses injected water circulating through a designed heat-exchange zone.

Your numbers actually underline the potential: you were getting ~50 MW per well from a shallow (~350–400C) hydrothermal system with awful chemistry. Modern SHR aims for rock in the 400–500C+ range, with supercritical water carrying far more enthalpy per kilogram and without the brine-chemistry penalty.

Whether SHR proves economical at scale is still an open engineering question. But the Campi Flegrei outcome doesn’t generalize to SHR any more than the problems of early natural-steam geothermal plants generalized to modern binary-cycle systems.

Does this distinction make sense from your point of view?

Comment Re:Banned. (Score 1) 65

I don't think he will or should receive a lifetime ban from any and all employment.

But as for MIT, or any other research institution with any prestige, my prediction is he is done.

As for Sam Altman, maybe you can point us to some example when he or OpenAI violated academic integrity by fabricating data like this?

Comment high-value scam (Score 1) 110

We see these ideas that are obviously nonsense all the time. This one has been picked apart by multiple people with industry experience already.

What these things are is essentially the venture capital version of the scam mails you get in your mailbox every day. If you make it big enough and insane enough, someone with more money than brains will think he spotted an opportunity that everyone else missed and will invest.

Why is it, you think, that 99% of these things vanish without a trace after an initial storm of publicity?

Submission + - Captcha and Locale

Anne Thwacks writes: Google's Captcha fails to account for locale. Eg: we do not have crosswalks, we have Zebra crossings.

However, that is not the most serious problem with Captcha: when they say "bicycles" does that include or exclude motorcycles? does it include or exclude parts of a bicycle? (Or staircase, or bus) if parts, how small are the parts? Does the last 3mm of a handlebar count as a bicycle? Does just the wing mirror count as a whole bus? Does a quarter of the bottom step count as a staircase? and why are the pictures so small and blurry on my 4k screen that I can't actually tell what is in the picture anyway? Why can't the pictures scale to the window? Some people have 8k screens. It is not 2010 any more!

Now Google says I am a robot, and won't let me read my own mail. Is this cruel and inhuman torture according to any known legislation? Are Google fit to be in charge of anything at all? What can be done about this?

Comment Re:Yes, but and most importantly (Score 1) 216

The only way would be if there were a true breakthrough in tunneling costs (which from what I can tell the Boring Company did not achieve.)

I dunno, I guess we can argue which possibility is more microscopically feasible than the others - a political surge of collectivism enabling eminent domain on a national scale, or devoting housing-boom scale resources to acquire and redevelop land on the surface, or a magical tunneling machine.

Pretty sure the answer is and will remain "put wings on each railroad car and make it fly over all the congestion." It does convert an awful lot of jet fuel into CO2 though.

Comment Re:It doesn't work at scale (Score 0) 34

I talked with Chat-GPT to understand its argument, and the gist was: the critique about low thermal conductivity was absolutely correct for the geothermal attempts between ~1970 and 2010. But modern “superhot rock” geothermal is operating in a very different regime.

First, they can now induce vastly more fractures in the rock. Heat transfer in geothermal isn’t about the raw conductivity of solid rock - it’s about surface area. More fractures = more exposed hot rock = more efficient heat sweep. The fracture networks used today are orders of magnitude larger than the old HDR trials.

Second, the water isn’t just hot water or steam anymore. At these temperatures and pressures it becomes a supercritical fluid. That matters because it convects heat through the fracture network instead of relying on slow conduction. So you don’t get the old “hot spot next to the well / cold depleted zone” behavior - the fluid actively evens out temperature gradients.

Third, the sites they’re using now (like Newberry Volcano) have massively higher heat flux from below. Many of the early HDR projects were drilled into generic crustal hot rock with weak replenishment. Near a volcano, the heat flow is orders of magnitude higher.

Add to that the modern toolkit - horizontal drilling (mid-2000s onward), high-temperature drilling materials, computer-modeled fracture design, etc. None of this existed during the early HDR experiments that gave geothermal a bad reputation.

Chat-GPT summed it with a metaphor: the old Hot Dry Rock systems were like trying to heat your house using a candle in the corner. Tiny fracture zones, minimal surface area, conduction-limited, fast local cooling and slow reheating.

The new approach is more like engineering a large underground heat exchanger connected to a huge volcanic heat source.

And yes, you can overdraw heat - just like you can over-pump groundwater. But operators don’t have to push it that hard, and modern models tell them exactly how much heat they can sustainably take each year.

I don't understand these topics deeply? I'm hoping that you do, and that this will mean something to you.

Comment Re:It doesn't work at scale (Score 1, Interesting) 34

I'm not an engineer, but here's what Chat-GPT thinks, when I shared your comment with it:

---

Not quite. This criticism is valid for old-school “hot dry rock” geothermal (1970-2010), but it doesn’t apply to the new superhot-rock designs.

It’s true that rock has low thermal conductivity and that conduction-limited systems cool locally if you withdraw heat faster than it flows back. That’s exactly why the early HDR [Lion: -- this means "Hot Dry Rock"] experiments never scaled.

But superhot-rock geothermal isn’t using the old model.

Three things have changed:

Supercritical water (>374C, high pressure).
At these temperatures you’re no longer circulating liquid water or steam. Supercritical fluid behaves like a gas in viscosity but carries heat like a liquid, and has dramatically higher enthalpy. It transfers heat through fractured rock convectively, not purely by conduction. That’s a completely different thermodynamic regime than the classic HDR studies.

Engineered fracture networks (modern EGS).
Today’s EGS looks much more like a controlled, high-permeability heat exchanger than a single injection well in a monolithic rock mass. You’re creating a huge surface area and letting supercritical fluid sweep heat through it. The limiting factor becomes the fracture network, not the bulk conductivity of a single block of granite.

Volcanic settings with very high heat flux.
The Newberry system is only a few miles from an active magma body. The heat inflow from depth is orders of magnitude higher than at the old HDR field sites. You still have to manage production rates, but you’re no longer relying on conduction through kilometers of cold crust.

The “if it were workable we’d already be using it” argument also doesn’t hold. We didn’t have:

* horizontal drilling at scale until the mid-2000s,

* the ability to design fracture networks with modern HPC,

* high-temperature drilling materials,

* or any commercial attempts at supercritical geothermal

until the last decade.

The physics hasn’t changed, but the engineering finally can reach the temperatures where supercritical convection dominates and where the geothermal resource is effectively thousands of times denser.

Superhot geothermal still has plenty of open questions (scaling, economics, long-term well integrity), but the “thermal conductivity of rock makes it impossible” critique is describing the previous generation of geothermal, not the current one.

Slashdot Top Deals

Reactor error - core dumped!

Working...