Catch up on stories from the past week (and beyond) at the Slashdot story archive

 



Forgot your password?
typodupeerror

Comment Re: Alibaba (Score 1) 31

Well, I'm about to find out if I need to do my first chargeback, I have a delayed response on a return authorization for where I was sent the wrong item. They advertised a different version. This might be confusing for them since the difference is small - yet critical. But there really should be no confusion because they advertised the other version both in the images and the product name/listing title.

Comment Re:It's (Score 1) 75

Looks good, but I can't find the app in my TV's store so it's a complete non-starter.

I got a Google TV because I knew it would have the best app support. Looks like you didn't.

My desktop TV-used-as-Monitor has stupid LG WebOS, but I also don't need a TV-specific app since my desktop is connected to it and I don't connect the TV to the network, only HDMI.

Comment Re: You can't cut off cheap Chinese goods (Score 1) 83

Because that will not pacify the poor. Printing money constantly will cause monetary inflation, so only the rich will be able to buy anything of significant value like homes. You'd have to also give away housing. It makes much more sense just to take the money from the rich and give it to the poor, the rich will end up with it again anyway.

Comment Re: Alibaba (Score 3, Interesting) 31

I buy from AliExpress all the time. (Same business, different storefront.) As a rule they are roughly as responsive as Amazon. Shipping takes longer but prices are much better. Pretty much all the cheap crap on Amazon comes from them and it's much cheaper from the source. So far they have processed all of my complaints gracefully.

Comment Re:Could the AI bubble do something good? (Score 1) 54

I agree that's the main problem in this context, but there are other large ones of course. The nuclear isn't just a problem in construction, it's also a problem in maintenance, and in decommissioning. Nuclear is also not cheaper than fossil fuels if you consider full lifecycle costs of operation. You might say it's cheaper because it's possible to contain the waste and that's not possible for fossil fuels, but fossil fuels shouldn't actually even be in the running.

Comment Re:PR article (Score 2) 247

Sure do :) I can provide more if you want, but start there, as it's a good read. Indeed, blind people are much better at understanding the consequences of colours than they are at knowing what colours things are..

Comment Re:PR article (Score 1) 247

The congenitally blind have never seen colours. Yet in practice, they're practically as efficient at answering questions about and reasoning about colours as the sighted.

One may raise questions about qualia, but the older I get, the weaker the qualia argument gets. I'd argue that I have qualia about abstracts, like "justice". I have a visceral feeling when I see justice and injustice, and experience it; it's highly associative for me. Have I ever touched, heard, smelled, seen, or tasted an object called "justice"? Of course not. But the concept of justice is so connected in my mind to other things that it's very "real", very tangible. If I think about "the colour red", is what I'm experiencing just a wave of associative connection to all the red things I've seen, some of which have strong emotional attachments to them?

What's the qualia of hearing a single guitar string? Could thinking about "a guitar string" shortly after my first experience with a guitar string, when I don't have a good associative memory of it, sounding count as qualia? What about when I've heard guitars play many times and now have a solid memory of guitar sounds, and I then think about the sound of a guitar string? What if it's not just a guitar string, but a riff, or a whole song? Do I have qualia associated with *the whole song*? The first time? Or once I know it by heart?

Qualia seems like a flexible thing to me, merely a connection to associative memory. And sorry, I seem to have gotten offtopic in writing this. But to loop back: you don't have to have experienced something to have strong associations with it. Blind people don't learn of colours through seeing them. While there certainly is much to life experiences that we don't write much about (if at all) online, and so one who learned purely from the internet might have a weaker understanding of those things, by and large, our life experiences and the thought traces behind them very much are online. From billions and billions of people, over decades.

Comment Re:PR article (Score 1, Insightful) 247

Language does not exist in a vacuum. It is a result of the thought processes that create it. To create language, particularly about complex topics, you have to be able to recreate the logic, or at least *a* logic, that underlies those topics. You cannot build a LLM from a Markov model. If you could store one state transition probability per unit of Planck space, a different one at every unit of Planck time, across the entire universe, throughout the entire history of the universe, you could only represent the state transition probabilities for the first half of the first sentence of A Tale of Two Cities.

For LLMs to function, they have to "think", for some definition of thinking. You can debate over terminology, or how closely it matches our thinking, but what it's not doing is some sort of "the most recent states were X, so let's look up some statistical probability Y". Statistics doesn't even enter the system until the final softmax, and even then, only because you have to go from a high dimensional (latent) space down to a low-dimensional (linguistic) space, so you have to "round" your position to nearby tokens, and there's often many tokens nearby. It turns out that you get the best results if you add some noise into your roundings (indeed, biological neural networks are *extremely* noisy as well)

As for this article, it's just silly. It's a rant based on a single cherry picked contrarian paper from 2024, and he doesn't even represent it right. The paper's core premise is that intelligence is not lingistic - and we've known that for a long time. But LLMs don't operate on language. They operate on a latent space, and are entirely indifferent as to what modality feeds into and out from that latent space. The author takes the paper's further argument that LLMs do not operate in the same way as a human brain, and hallucinates that to "LLMs can't think". He goes from "not the same" to "literally nothing at all". Also, the end of the article isn't about science at all, it's an argument Riley makes from the work of two philosophers, and is a massive fallacy that not only misunderstands LLMs, but the brain as well (*you* are a next-everything prediction engine; to claim that being a predictive engine means you can't invent is to claim that humans cannot invent). And furthermore, that's Riley's own synthesis, not even a claim by his cited philosophers.

For anyone who cares about the (single, cherry-picked, old) Fedorenko paper, the argument is: language contains an "imprint" of reasoning, but not the full reasoning process, that it's a lower-dimensional space than the reasoning itself (nothing controversial there with regards to modern science). Fedorenko argues that this implies that the models don't build up a deeper structure of the underlying logic but only the surface logic, which is a far weaker argument. If the text leads "The odds of a national of Ghana conducting a terrorist attack in Ireland over the next 20 years are approximately...." and it is to continue with a percentage, that's not "surface logic" that the model needs to be able to perform well at the task. It's not just "what's the most likely word to come after 'approximately'". Fedorenko then extrapolates his reasoning to conclude that there will be a "cliff of novelty". But this isn't actually supported by the data; novelty metrics continue to rise, with no sign of his suppossed "cliff". Fedorenko argues notes that in many tasks, the surface logic between the model and a human will be identical and indistinguishable - but he expects that to generally fail with deeper tasks of greater complexity. He thinks that LLMs need to change architecture and combine "language models" with a "reasoning model" (ignoring that the language models *are* reasoning - heck, even under his own argument - and that LLMs have crushed the performance of formal symbolic reasoning engines, whose rigidity makes them too inflexible to deal with the real world)

But again, Riley doesn't just take Fedorenko at face value, but he runs even further with it. Fedorenko argues that you can actually get quite far just by modeling language. Riley by contrast argues - or should I say, next-word predicts with his human brain - that because LLMs are just predicting tokens, they are a "Large Language Mistake" and the bubble will burst. The latter does not follow from the former. Fedorenko's argument is actually that LLMs can substitute for humans in many things - just not everything.

Slashdot Top Deals

...when fits of creativity run strong, more than one programmer or writer has been known to abandon the desktop for the more spacious floor. - Fred Brooks, Jr.

Working...