Become a fan of Slashdot on Facebook


Forgot your password?
Slashdot Deals: Deal of the Day - Pay What You Want for the Learn to Code Bundle, includes AngularJS, Python, HTML5, Ruby, and more. ×

Comment Re:Easy solution (Score 1) 439

Yes, I read the articles. What I stated is that the article is biased and wrong. Your opinion is that the article is right and that one or two anecdotes explain the electric car market. I'd contend that actual empirical sales figures for different types of vehicles and actual costs for different types of vehicles are more illuminating than a couple of anecdote's written by someone with a well-known bias, but YMMV. :)

I'm willing to be proven wrong. Have you ever seen any data from a relatively neutral or reputable source indicating that electric cars on average have lower total cost of ownership than comparable gas vehicles?

I picked one at semi-random (literally, the first one I found in a Google search) and looked up the TCO on Edmunds:
Spark EV, 5 year TCO $34K
Exact same car, gas version, 5 year TCO $28K

So in exchange for your car only having an 82 mile range before needing to be charged vs a 300+ mile range before a much faster fill-up, you only need to pay 22% more for it. What a deal!

Unless you are in a rare and special situation, the EV version isn't going to be a good deal for you. You're paying more and getting less. That's why only 1.6% of new cars sold are EVs... it doesn't make sense for the vast majority of people to buy them. Occam's razor, the simple reason is the correct one here, no need for conspiracy theories about dealerships.

Comment A field full of two layers of firefighters. (Score 1) 102

As mentioned previously, my mental model of semiconductors and the like is a fireman's water brigade, were either the majority of the line has buckets or empty hands.

It helps if, instead of a line, you think of a LOT them standing in a two-D array (like in the yard of the burning building, or a section of a parade that's stopped to do a little demo). It's really three-D, but we'll want to use up/down for something else in a bit...

For metallic electron conduction everybody has TWO buckets, one for each hand, and when a guy by the fire throws a buck of water on it (bucket and all) on the fire, a guy farther back immediately tosses him a bucket, the guy behind him essentially instantly throws HIM a bucket, andso on. Hands are effectively never empty.

For semiconductors, imagine two layers of these guys, the second standing on the firsts' shoulders or on a scaffold right above them, and about enough buckets for each of the guys on the ground to have two and the guys on the scaffold to have none. (There's actually many layers of scaffold, but the rest are so far up that it's hard to get a bucket to them, so they mostly just stand around.)

Usually nothing useful is happening. Everybody on the bottom layer has both hands full of buckets, and it's hard to hand a bucket up to the guys on the top.
  - Electron-hole pair creation: Somebody comes up with the energy to heave a bucket up to the guys on the upper layer, leaving a guy with one hand empty in the lower layer. (Maybe somebody (a photon, for instance) comes along with a lacrosse stick and whacks a bucket up to a guy in the top row - dying or becoming exhausted and much weaker from the effort.) Now you've got one guy with a free hand in the lower layer (a hole) and one bucket on the top layer (a free electron).
  - Electron conduction in a semiconductor is that bucket on the upper layer. The guys there can hand it around easily, or toss it along a diagonal until it would hit a guy - who catches it. They're all standing on accurately-spaced platforms so the bucket can go quite a way before somebody has to catch it. Suppose there's a slope to the yard, with the fire at the bottom. Then, if tossed too far, the bucket might pick up substantial speed and knock the guy who catches it out of place (electromigration), or fall down to the lower layer and knock another bucket out of somebody's hand and bounce, ending up with TWO buckets on the upper layer and an empty hand below (avalanche electron-hole creation).
  - Hole conduction is when you've got an empty hand on the bottom layer: Now it's easy for a guy with two buckets to hand a bucket to a guy with only one, exchanging a bucket for an empty hand. But now the guy whose hand had been empty has two buckets and nobody in the downhill/toward-fire direction to hand a bucket to, while the guy who handed it off has an empty hand and can grab a bucket from somebody farther uphill / closer to the water source - or beside him, or diagonally. So "empty-handedness" (a hole) can move around as a persistent entity while the individual buckets gradually work their way in the general direction of the fire, only making a bit of progress "when a hole comes by". Though the water makes progress toward the fire, the action is all where the holes are making progress away from the fire.
  - Electron-hole annihilation: Somebody has a bucket on the upper layer when a guy below him has an empty hand. So he drops the bucket. CLANG! Ouch! Now there's no "free bucket" on the upper layer, no free hand on the lower layer, and the energy of their separation went somewhere else (knocking the guy sideways so he bumps into his neighbor and generally making the guys vibrate, "creating a guy with a lacrosse stick who runs off to whack at buckets", etc.)
  - P-type doping: A guy in the bottom layer had a sore hand and only brought one bucket to the fire, thus having a free hand from the start. He can take a bucket when a neighbor pushes it at him (the hole moves away). But he'd like to hand it off and have his sore hand free again (so holes tend to stick around at his site). It's lots easier to "make a free hole" by convincing him to hold a bucket in his sore hand than by tossing a bucket up to the guys on the scaffold, but does take a little effort.
  - N-type doping: One of the guys on the upper level really likes to hold a bucket, so he brought one with him. The guy next to him can grab it from him, but if another comes along he'll try to hold on to it a bit until somebody shames him into letting go again or wrestles it from him. It's lots easier to get him to let you use his bucket for a while than to pull one up from the guys on the ground, but it does take a little effort.
  - Tunneling through a potential barrier: There's a ridge across the field. It's hard to hand buckets up to the guys on the ridge, so they don't flow across it very well (unless someone at the side of the field is pushing the buckets really hard...) Occasionally the guys on one side of the ridge hand a bucket through the legs of the guys standing on the ridge to the guys on the other side.
And so on. B-)

I'm keenly interested in finding more material to read up on the observed Hall effect measurements. Thanks again for your contribution to the discussion.

The wikipedia article on the hall effect has a section on the hall effect in semiconductors, but both it and the reference it uses start from treating the hole as a charge carrier with a fixed charge and a mobility different from a free electron, and just computes formulai from there.

If the hall effect on hole currents were fallout from the hall effect on the individual electron bucket-transfers, rather than the hole acting like a positive charge carrier in its own right, you'd think it would go the other way

Comment Re:A confused mess of thought... (Score 1) 212

No, big screens aren't going away

And much of the evidence that might be advanced to show that they are going away can be misleading. People might watch many YouTube videos on their tablets and smart-phones, but all those videos are very short. Looking at the total amount of viewing, in minutes, shows that tablet and smort-phone viewing is much less important than many think.

Comment Re:Live streaming beats fixed schedule (Score 1) 212

I think the TV as such is mostly going to go away, at least the form with a tuner. Here in Norway the mean broadband connection is 33 Mbit/s, the median 24 Mbit/s and 90%+ have 4+ Mbit/s.

Here in the US, each individual "channel" can carry 19Mbps. That means your "mean broadband connection" can't even support TWO simultaneous channels at full quality. How many people are in each of those houses, sharing those broadband connections? And how terribly inefficient is it for everyone to unicast what could be broadcast one-time for all?

In the US there are currently 50 channels, for 950Mbps total, continuously. It'll be a while before everyone's internet connections get there. And that's just OTA. Cable services can broadcast many, many times as much data. I'd be inclined to say things could and should go the other way... with everyone getting a networked DVR, and popular YouTube/Netflix/Hulu videos pre-fetched when they are broadcast OTA.

Comment Re:Screw paying for ANY television viewing (Score 1) 212

Updating of OTA broadcast, I think, will find more people turning to it and away from shitty cable and satellite, which is already a trend.

People are dropping cable, and more are installing antennas, but TV viewership even on broadcast OTA networks is also falling, as people spend more time on mobile devices...

I expect OTA viewership will take-off, and cable will really die, when mobile devices like tablets start including built-in TV tuners and antennas... Plenty of people with time to waste are away from home, and would like some entertainment that doesn't eat up their astronomically expensive data plan.

It has already been done... But once Apple gets the idea, everybody else will copy them, and the press will gush about how incredibly innovative they are...

Streaming over the Internet, I think, is just another 'pay TV' trap like cable and satellite, and as a matter of fact if you think for a moment, how is it really any different than cable or satellite directly connected to your TV?

Simple... Internet-based services don't hold a geographic monopoly like cable companies do. Lots of competition, versus NO competition.

Changing technology matters, too. Cable couldn't help but be linear, non-interactive a few decades ago. Now they can do things smarter, but many of their declining number of customers demand they maintain the old model, and their contracts with networks are equally difficult to substantially change to allow a new service model.

Comment Another useful vacuum tube: Thermionic converter. (Score 1) 102

Another vacuum tube technology with current applications and substantial advantages over semiconductor approaches to the same problems is the Thermionic Converter. This is a vacuum-tube technology heat engine that turns temperature differences into electric power - by boiling electrons off a hot electrode and collecting them, at a somewhat more negative voltage (like 0.5 to 1 volt), at a cooler electrode.

Semiconductor approaches such as the Peltier Cell tend to be limited in operating temperature due to the materials involved, and lose a major fraction of the available power to non-power-producing heat conduction from the hot to the cold side of the device. Thermionic converters, by contrast are vacuum devices, and inherently insulating (with the heat conducted almost entirely by the working electrons, where it is doing the generation, or parasitic infrared radiation, which can be reflected rater than absorbed at the cold side.) They work very well at temperatures of a couple thousand degrees, a good match to combustion, point-focused solar, and nuclear thermal sources.

Thermionic converters have been the subject to recent improvements, such as graphine electrodes. The power density limitation of space charge has been solved, by using a "control grid" to encourage to charge to move along from the emitter to the collector and magnetic fields to guide it (so it doesn't discharge the control grid and waste the power used to charge it).

Current thermionic technology can convert better than 30% of the available thermal energy to electrical power and achieves power densities in the ballpark of a kilowatt per 100 square cm (i.e. a disk about 4 1/2 inches in diameter). That's a reasonably respectable carnot engine. This makes it very useful for things like topping cycles in steam plants: You run it with the flame against the hot side so it is at the combustion temperature, and the "cold" side at the temperature of the superheated steam for your steam cycle. Rather than wasting the energy of that temperature drop (as you would with a pure steam cycle) you collect about a third of it as electricity.

It also beats the efficiency of currently available solar cell technology (and the 33.4% Shockleyâ"Queisser theoretical limit for single-junction cells), if you don't mind mounting it on a sun-tracker. Not only that, but you can capture the "waste heat" at a useful temperature without substantial impairment to the electrical generation or heat collection, and thus use the same surface area for both generation and solar heating. (Doing this with semiconductor solar cells doesn't work well, because they become far less efficient when running a couple tens of degrees above room temparature.)

Comment Re:Easy solution (Score 0) 439

The problem isn't that dealers don't want to sell them to anyone if they can make a profit on them, it's that customers don't want to buy them. i.e. they're 1.6% of new car purchases (leaving out trucks,minivans, suvs, etc.. just comparing to cars).

So most sales guy's experience is that even if someone walks in wanting to ask about the latest electric car, they're really going to end up buying a gas car once they get the facts about range, battery life, etc..., so why not just sell them the gas car that makes more economical sense to them in the first place and not waste everyone's time.

Of course, the three left-wing elitist publications linked from the summary believe they need to run everyone else's life when it comes to purchasing "green", so they just can't understand that the vast majority of people don't want to throw away their money and time on an environmental status symbol, so they blame the dealer. Glad their buddies don't control things like light bulb regulations, or we wouldn't be allowed to buy less expensive bulbs, either.... oh wait...

Comment Re:Extrapolating from two anecdotes (Score 0) 439

The summary links three different left-wing (for the US) news sources complaining about dealers because electric car sales aren't as high in the US as their wishful thinking believes they should be.

In October 620K cars were sold in the U.S., of which 10K were plugin electric. That's right, 1.6% of cars. That's not counting the trucks, minivans, SUVs,etc.. Heck, they sell twice as many luxury (not regular) SUVs a month than plug in cars.

How about for a reason they don't sell, almost nobody wants to buy one because they don't make economic sense for the vast majority of people who want to use their cars more for driving places then making an expensive environmental fashion statement? Without taxpayer subsidies, virtually none would be sold. Even with subsidies, it's more economical to buy a gas car, even if you include the gas and total repair costs for both over their effective mileage life.

People aren't stupid, but environmental elitists at the NY Times, Mother Jones and Green Car Reports think they know better than all the car purchasers out there what they should be buying and if they aren't buying it, it must be some sales guy's fault. What a load of B.S...

Comment Re:Many a young engineer.... (Score 2) 102

... every schematic drawn by every semiconductor engineer got the arrow backwards.

As I heard it, The arrow is "backward" because Benjamin Franklin, when doing his work unifying "vitreous" and "resinous" electricity as surplus and deficit of a single charge carrier (and identifying the "electrical pressure" later named "voltage"), took a guess at which corresponded to a surplus of a movable charge carrier. He had a 50% chance to assign "positive" to the TYPICAL moving charge carrier in the situations being experimented with (charge transfer by friction between different substances, currents in metallic conductors, and high voltage discharges in air and water-in-air aerosols) and happened to guess "wrong".

Thus we say electrons have a negative charge, "classical current" corresponds to the sum of the flow of moving positive charge minus the flow of negative charge (i.e. the negative of the electron current, which is all there is in normal-matter metallic conductors), the arrowhead on diodes (and junction transistors) points in the direction of classical current across a junction, and so on.

But though it's the charge carrier in metallic conduction and (hard) vacuum tubes, the electron ISN'T the only charge carrier. Even in the above list of phenomena, positive ion flow is a substantial part of electrical discharge currents in air - static sparks and lightning. Positive moving charge carriers are substantial contributors to current as you get to other plasma phenomena and technologies - gas-filled "vacuum" tubes (such as thyratons), gas an LIQUID filled "vacuum" tubes (ignatrons), gas discharge lighting, arc lighting, arc welding, prototype nuclear fusion reactors, ...

Move on to electrochemistry and ALL the charge carriers are ions - atoms or molecular groups with an unequal electron and proton count, and thus a net charge - which may be either positive or negative (and you're usually working wit a mix of both).

And then there's semiconductors, where you have both electrons and "holes" participating in metallic conduction. Yes, you can argue that hole propagation is actually electron movement. But holes act like a coherent physical entity in SO many ways that it's easier to treat them as charge carriers in their own right, with their own properties, than to drill down to the electron hops that underlie them. For starters, they're the only entity in "hole current" that maintains a long-term association with the movement of a bit of charge - any given electron is only involved in a single hop, while the hole exists from its creation (by an electron being ejected from a place in the semiconductor that an electron should be, by doping or excitation, leaving a hole) to their destruction (by a free electron falling into them and releasing the energy of electron-hole-pair separation). They move around - like a charge carrier with a very short (like usually just to the next atom of the solid material) mean free path.

For me the big tell is that they participate in the Hall Effect just as if they were a positive charge carrier being deflected by a magnetic field. The hall voltage tells you the difference between the fraction of the current carried by electrons excited into a conduction band and that carried by holes - whether you think of them as actual moving positive charge carriers or a coordinated hopping phenomenon among electrons that are still in a lower energy state. Further, much of interesting semiconductor behavior is mediated by whether electrons or holes are the "majority carrier" in a given region - exactly what the hall effect tells you about it.

So, as with many engineering phenomena, the sign for charge and current is arbitrary, and there are both real and virtual current carriers with positive charge. Saying "they got it wrong" when classical current is the reverse of electron current is just metallic/thermionic conduction chauvinism. B

Comment Much todo about zip--ConsoleKit2 is also supported (Score 5, Informative) 666


First, only an idiot would want a monoculture, particularly in the Linux world, so to those saying "just to systemd full bore or go to (someplace else)" the rest of us need to respond with a very loud and resounding: Fuck You.

That said, things aren't nearly as dire as this post implies. Reading from the responses to the bug he himself linked to, I find the following:

> Unless KDE is prepared to make a statement that it depends on systemd

of course not. Powerdevil recently also gained support for ConsoleKit2, see:

Which turns it into a distro problem. Your distribution configured the system in a way that suspend/hibernate is broken. It doesn't come with any of the supported solutions Plasma provides. Which makes it a distro problem. The distro integrates various parts of the software stack. This includes it's the distro's task to ensure that components work together. It failed here by ripping out systemd and replace it with well nothing.

So while I'm sure the systemd zealots would love to see KDE, Gnome3, etc. only work with systemd and drop support for all other distros, this doesn't appear to be happening. In the case of KDE, ConsoleKit2 is supported (and therefor Funtoo, Gentoo, Arch with OpenRC, etc. will continue to work just fine).

Comment Re:Vacuum tubes handle EMP's better (Score 1) 102

"No point progressing since the bombs are gonna fall any day now. Then where will your fancy silicon highways and databases be?"

Given that the Internet Protocol and much of the rest of the networking technology that still underpins the Internet were developed as part of a cold-war program to create a communication system that could survive a nuclear attack that destroyed most of it, and still reorganize itself to pass messages quickly, efficiently, and automatically among any nodes that still had SOME path between them, your post seems to come from some alternate universe to the one I inhabit.

Comment Not the first full recovery from space (Score 1) 121

SpaceShip One touched space and all elements were recovered and flew to space again.

BO's demonstration is more publicity than practical rocketry. It doesn't look like the aerodynamic elements of BO's current rocket are suitable for recovery after orbital injection, just after a straight up-down space tourism flight with no potential for orbit, just like SpaceShip One (and Two). They can't put an object in space and have it stay in orbit. They can just take dudes up for a short and expensive view and a little time in zero gee.

It's going to be real history when SpaceX recovers the first stage after an orbital injection, in that it will completely change the economics of getting to space and staying there.

The secret of success is sincerity. Once you can fake that, you've got it made. -- Jean Giraudoux