Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!

 



Forgot your password?
typodupeerror
×

Comment You see that with thermoacoustics. (Score 1) 69

3D printing was the result of a lot of researchers working on a lot of parts, and when the dust settled, none of them could build a really practical printer without paying off all the other patent holders, most of whom were playing dog-in-the-manger with their patents while trying to elbow out the competition.

You see that with a lot of inventions. They may go through several cycles of invention / related invention / non-conbination / wait / patent expiration until enough necessary parts of the technology are patent-expired that the remaining necessary inventions can be assembled in a single company's product and the technology finally deployed.

Thermoacoustics, for instance, just had its second round of patent expiration and is in its third round of innovation. The basic idea is to make a reasonably efficient heat-engine and/or refrigerator (or a machine that combines, for instance, one of each) with no moving parts except a gas. Mechanical power in the form of high-energy sound inside a pipe is extracted from, or used to create, temperature differences.

There are some really nice gadgets coming out of it, built mainly out of plumbing comparable to automotive exhaust systems and tuned manifolds, maybe with some industrial-grade loudspeakers built in, or their miniaturized or micro-minaturized equivalent. (Example: A hunk of pluming with a gas burner, about 12 feet high and maybe eight feet on a side. Oil fields often produce LOTS natural gas in regions, like big deserts, where it's uneconomic to ship it to market. It gets burned off and vented. (CO2 is weaker greenhouse gas than CH4, by a factor of several). Pipe the gas into the plumbing, light the burner, and it burns part of it to get the power to cool and liquify the rest. As a liquid it's economic to ship and sell it. Then you get to use much of the otherwise wasted energy, displacing other fuel supples and reducing overall carbon emssion.

I hope this is the cycle where things hit the market.

Comment They can matter if you sell what you make on it. (Score 1) 69

Patents don't matter for making a printer for your own use.

They can matter if you build a business on them, like by selling objects built using them.

Especially if they improve make your process cheaper, easier, more convenient, flat-out possible, or produce a better part. (And if there ARE cheaper, etc. ways to do it, why are you using the patented tech anyhow? B-) )

Patents in the US were about increasing innovation by making first mover advantage truump second mover advantage: Giving the little guy with the bright idea time to set up manufacturing, make back his costs, reap some benefits, and get established enough to compete with existing large companies once they expire. Without them, it was thought, the existing big guys with the infrastructure in place could quickly clone the little guy's new invention and out-compete him in the market, but they wouldn't bother until the little guy had proved it was worth the effort. This would suck the incentive out of the little guys, the big guys would have little incentive to improve, and progress would be slow-to-stalled. The short-term inhibition on others deploying the invention was seen as less of an impediment to progress than having most inventions not be deployed, or even made, at all.

The idea was to set the time limit to maximize progress to the benefit of all/the country, and make manufacturing and technology grow like yeast (ala silicon valley B-) ). Part of the intent was to bias it toward innovators and make established processes free to use, because when the country was getting started the established players were owned by foreign interests. The founders wanted the country to develop its own industry, rather than being dependent on, and sending most of the profit to, big businesses in Europe.

But the time was set for heavy manufacturing at the pace of the period. It's a horrible mismatch for, say, software: With the availability of general purpose computing platforms, able to make distributable copies at electronic speed and copyright to prevent verbatim cloning, a person or company with a new software product can go from steath-mode program development to market establishment, profitibility, and even market dominance in a matter of months, before competitors can engineer their own version. So patents aren't necessary to promote innovation, leaving just their retarding effect holding down the blaze of creativity. (Then there's open source, with its alternitive monitization and/or reward strategies. But that's a "new invention". B-) )

It seems to me that:
  - The expiration of patents on stereolithography did help produce the initial explosion of new, and often inexpensive, devices and the improvements in what can be made, how accurately, and how inespensively.
  - The availability of machines suitable for practical industrial prototyping - even before the cheap machine explosion - pretty much forced the high-end CAD software producers to include some form of stereolithography output format, while an open output format made the choice obvious. That's a big benefit to the toolmaker for a small effort. The availability in the high-grade commercial tools is a great synergy and helps a lot. But the hobby machines needed CAD tools and open source was already up to the task: Had the big players not gone along it still would have been done, and those big players not "with the program" would be experiencing major competitive pressure from open source tools and competitors that did provide such output.

And here's the key:
  - The availabitiy of these rapid general-purpose maufacturing tools will bring (is already bringing!) software's high-speed innovation and entrepenurial models to the manufacture of physical objects. Patents could be shortened in term or reduced to "design patents" - the manufacturing equivalent of copyright - and produce a physical-product explosion comparable to the computer revolution. (Or patents, like "content" copyright, could become the tool of obsoleted established players in the suppression of the competing business models.)

Brace yourself for either the physical-manufacture ramp-up to science-fiction's "singularity" or an ongoing RIAA / MPAA / conglomerate - style legal battle.

Comment Get a real phone. (Score 4, Interesting) 304

Apple needs to get their ruggedness act together. Meanwhile, here's a real phone, the Caterpillar B15.

Cat B15 tested by users. Dragged behind car. Used to play basketball. (As the ball, not as a computer game.) Dropped off bridge. Run through cement mixer. Frozen in bucket of ice. Run over by car. No problem.

Cat B15 tested by Caterpillar. Dropped into pool of water. Scooped out with heavy equipment. Run over by front end loader. (One of Cat's smaller front end loaders.) No problem.

It's an Android phone. The B15 runs Android 4.2; the new B15Q runs Android 4.4. Price around $300. Available in the US at Home Depot. Unlocked; pick any GSM carrier. T-Mobile works. No annoying carrier-provided apps. Caterpillar preloads apps for ordering Caterpillar heavy equipment parts and renting heavy equipment.

If you have one of these in a pocket, you will break before it will. I carry one of these horseback riding.

Comment Don't do apps. (Score 3, Insightful) 316

You say you're an experienced embedded-systems developer. Those are rare. Stay with that and get better at it. There are already a huge number of people grinding out appcrap, more than the app market can support. Soon there will be a glut of former phone app programmers, if there isn't already.

Try to get in on the back end of the "Internet of things". That crowd is overrun with appcrap people and has no clue about embedded.

Comment The 3D printing revolution isn't quite here yet. (Score 1) 69

The low-end 3D printers, the ones that try to weld ABS string together, still suck. TechShop has several of them. The Jet was a a flat failure. The Replicator 2 is OK if you're not building something more than about 2cm thick. I haven't tried the Type A Machines unit. In the end, it's a slow way to make prototype plastic parts that are inferior to injection-moulded ABS. Injection moulding requires machining a die, which is a big job, but then the production rate is high and the cost is very low.

The higher end printers have much better quality and more material options, but the machine cost is high and the process is slow. The really high end printers, the ones Space-X and Lockheed use to print aerospace parts, are very impressive, but still slow.

Comment The real breakthrough - no more electrolytic caps (Score 3, Informative) 182

The real breakthrough in LED lighting is getting rid of electrolytic capacitors in the power supply. Those are currently the components with the shortest life. See "Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode (LED) Driver With High Input Power Factor and Constant Output Current" Variations on that technology are now going into production LED lighting units. This should push unit lifetimes up from 20,000 hours to that of the LEDs, 40,000 or so. (Provided the quality of the LEDs doesn't slip.)

Comment Re:Obviously! (Score 1) 179

In fairness, I was being a trifle hyperbolic(I figure that I've done my job when I manage a post that is insightful and funny enough that you don't select 'flamebait'; but nasty enough that you are tempted); but I do think that there is more than a bit of truth to it.

For the sake of fairness, some 'dashboards' do suck because they are all trees and no forest: a hell of a lot of blinky lights and numbers that look great on a display wall; but historical data are unavailable or buried and hard to turn into comparisions/health-over-time displays, and the arrangement as a whole is strongly biased in favor of spewing data as though data were actually equal to knowledge and understanding at the expense of being able to get a sense of what is actually going on.

However, that's not an argument in favor of reports, it's an argument against 'dashboards' that suck. A good dashboard should be malleable enough to provide a coherent historical overview, over the desired period, at a suitably chosen level of detail. A 'report'; but fully dynamic and drawing on the same basis as the 'dashboard'.

If the dashboard sucks, it needs fixing; but there does seem to be an aesthetic thing (the effect is strongest in movies/games about naval or spaceship combat: lots of minions, huddled over viewscreens, sometimes physically below the command dais in little peon pits, while the CO stands against a dramatic backdrop, touching none of the systems, operating at such a high level that occasional verbal interactions with his inferiors, and deliveries of summaries by the yoeman, tell him everything he needs to know. ). Yes, all moderately complex, or worse, systems are too big for any one person, and different people need different views; but if you think that you are so important that your view should differ in kind, rather than in configuration, you are mistaken.

Comment Can somebody fill me in? (Score 2) 24

TFA makes it sound like this is a relatively significant shift from in-house to contract work for NASA; but I've also read stuff over the years that gave the impression that a lot of 'in-house' NASA projects had, either as entire programs or as significant subcomponents, major involvement from various contractors, mostly the same ones that crop up in military/aerospace work.

Does this move represent an actual change in NASA's in-house capabilities, or is it more of a shift between "NASA Project: virtually all details brought to you by Lockeed-Martin" and "NASA just pays SpaceX to do the whole thing and present the results"?

I don't really want to get bogged down in a slugfest over whether it's a good thing or not(unless somebody has an interesting perspective on 'morale among directly-hired-by-NASA engineers' or some other actual information, not just a regurgitation of the usual talking points on in-house, contract, and COTS; but I would like to know what this shift represents: is NASA actually cutting back in favor of buying off-the-shelf, or is NASA just switching from 'contractors do most of the work, overall program is theoretically NASA' to 'Contract is for finished product, NASA is buying results, not parts.'

Slashdot Top Deals

"Don't drop acid, take it pass-fail!" -- Bryan Michael Wendt

Working...