Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!


Forgot your password?
Check out the new SourceForge HTML5 internet speed test! No Flash necessary and runs on all devices. Also, Slashdot's Facebook page has a chat bot now. Message it for stories and more. ×

Comment Re:Weak/nonexistent punishments for faulty notices (Score 1) 70

All patent applications are signed under penalty of perjury. However, the US Patent and Trademark office disbanded its enforcement department in 1974. So, you can perjure yourself on a patent application with impunity.

Unless it's testimony in a criminal case, or the perjury trap in front of a grand jury, or something they want to prosecute like lying on your tax form, the Federal government is in general lassiez faire about perjury, or even encouraging of it with their reluctance to prosecute, especially perjury committed by a so-called intellectual property holder.

Comment Re:Maybe (Score 1) 182

The short of it, Jupiter moves things around; it's very good at scattering other bodies, even large ones. First it dragged outer populations into the inner solar system, then scattered inner solar system material out, and then on its retreat pulled outer solar system material back in. It's actually a very big deal that it did that, as it brought ice into the inner solar system.

Comment Re:Maybe (Score 1) 182

1. "Adjective nouns" need to have similarity to "noun" but aren't necessarily a subset. Gummy bears aren't a subset of bears either.

Gummy bears are not a scientific term. Besides, the IAU itself already uses the word dwarf in this manner. Dwarf stars, dwarf galaxies... but carved out an inexplicable exception for dwarf planets.

I'd like to see a citation on this. I highly doubt that you can simulate the formation of a solar system where multiple Mars analogues can coexist in the same orbit

False equivalency. There's a difference between "two Mars sized planets existing in the same orbit" and "Mars' orbit having been cleared". And more to the point, the biggest problem with the concept of Mars clearing its orbit is that its orbit was already largely cleared when it formed. According to our best models, Jupiter reached all the way in to around where Mars' orbit is today, and had cleared almost everything to around 1 AU. Earth and Venus accreted from planetesimals between each other. Mars accreted from planetary embryos ejected to the space in-between Earth and Jupiter. Without Jupiter's migration, simulations produce an Earth-sized Mars and several planetary embryos in the asteroid belt on eccentric / high inclination orbits, something akin to the situation between Neptune and Pluto - except with the embryos nearly Mars-sized.

3. In a geological sense yes. But the current definition of planets is based on orbital mechanics, after which Earth is a lot closer to Jupiter than to Ceres/Pluto.

Huh? By what aspect of orbital mechanics? By semimajor axis and velocity, Earth is much closer to Ceres than Jupiter. Are you talking inclination and eccentricity? Then we should boot Mars in favour of low inclination / eccentricity asteroids.

4. Hydro-static equilibrium as a dividing line is way worse. There are roughly 100 TNOs where we don't really know whether they are elliptical.

Hydrostatic equilibrium can be very easily estimated based on mass, which can be approximately deduced within a range of feasible albedos and densities, and very accurately deduced if the body has a moon. By contrast, it's almost impossible to estimate neighborhood clearing to any distance beyond Neptune, or at all in the case of extrasolar planets. Which, to reiterate, the IAU definition says aren't planets, even though they have an extrasolar planet working group.

We'd have to visit each and every one of them with a probe just to put them in the proper category.

This is utter nonsense.

Meanwhile, it's completely clear which bodies qualify for the "clearing its orbit" rule.

No, it's not. We have virtually no clue what lies in the outer reach of our solar system. As we speak there's a search for a new planet that could be as big as an ice giant. It's a huge open question as to whether it would have cleared its neighborhood, and it will be very difficult to ascertain.

All currently qualifying planets have roughly 99% or more of the mass in their orbit in themselves. Ceres has 30%.

You seem to have some weird concept going on that "semimajor axis = orbit". Ceres has nothing of significance in its orbit. The asteroids are not all in the same orbit. They're certainly more likely to cross each others orbits, but that's not the same thing.

And again, since you apparently missed it: the reason that the inner solar system is largely cleared except for the asteroid belt (and the reason that the latter exists) is Jupiter. Mars did not clear its own neighborhood.

5. The definition should be mutable. Why should a planet that gets ejected keep counting as a planet?

You seriously have to ask why something that hasn't changed but is in a different location shouldn't suddenly be declared to be something entirely different? If you take a rabbit to Canada does it suddenly become a dwarf rabbit?

6. I highly doubt life could form in a non-cleared orbit.

Once again, you're stuck on this misconception that the only orbital parameter that exists is the semimajor axis. And also apparently a notion that stable orbital resonances don't exist.

Orbits can come in a wide range of forms. If you want to see how crazy they get, check out Epimetheus and Janus ;)

As for a life bearing celestial in orbit around another (gas giant) planet: I don't think anybody feels bad about calling that one a moon? As in "Yavin 4".

The funny point with your example being, that whenever you illustrate a large round (hydrostatic equilibrium) moon in sci-fi - Star Wars, Star Trek, Avatar, whatever - people invariably keep calling it a planet and having to correct themselves. We inherently recognize "large, round object with relevant gravity = planet", and have to shoehorn our minds into not using that term.

7. "Within each other's periapsis and apoapsis" seems like a reasonable enough definition that neither Ceres nor Pluto qualify for.

Once again, you ignore most orbital elements (seriously, stop right now and go read the Wikipedia article on orbital elements). We don't live in a 2D solar system. And your notion is oversimplified even for 2D.

All of this, let alone other aspects such as mass ratios, resonance, metastability, etc. And it gets even more complicated when you view the solar system not as a 2-body problem but a multi-body problem. Then things like horseshoe orbits, Lagrangian points, etc come into play.

8. Yes that's silly but that'll probably be changed easily enough and has no effect on Pluto.

1) It's over a decade later. Where's the fix?
2) It's just a symptom of how horribly hasty and ill-thought-out their action was.

9. How are you planning to ascertain hydro-static equilibrium for an exoplanet if we can't even do it for Varuna.

What are you talking about? Varuna is the size of Ceres. The fact that it hasn't been declared a dwarf planet by the IAU is again a symptom of the IAU's dysfunction on this issue. See #18. By contrast, we'd have no snowball's chance in hell of identifying all potential orbit crossers for it.

The fact that you bring up Varuna makes me think that you feel it shouldn't be a planet because it's an oblate spheroid. If so, that just reveals yet another problem with your understanding: you need to go look up the definition of hydrostatic equilibrium. Hint: if Varuna wasn't an oblate spheroid, then it wouldn't be in hydrostatic equilibrium.

Comment Re:R&D (Score 1) 100

Apple spends serious coin on Research and Development; far more than their competition.

This is almost true, though the vast majority of Apple's R&D funding is firmly at the D end of the spectrum. IBM used to spend a lot more than Apple on research, though they've cut down a lot. Microsoft still does (around $5bn/year on MSR). These companies and Google (and Oracle, and so on) all throw grants at universities for research, which Apple doesn't. It wasn't until last the last few months that Apple even published any of their research.

Comment Re:AI Snippets... (Score 1) 303

In this respect, it's not really any different from stuff genetic algorithms have been doing for decades. If you have a set of executable tests that can tell if the algorithm is working correctly, then you can evolve something that will pass the tests. Of course, you have absolutely no idea how it will behave on inputs not covered by your tests.

Comment Re:TL;DR something you claim is cogent...? (Score 5, Informative) 182

The IAU spend months in total hashing out this issue and three days talking in meetings before the vote

That's just the issue: that's not what happened. The IAU discussion was a disaster. Here's the timeline:

2005: The IAU appoints a committee to investigate the issue and generate a proposal. The committee investigated the issue for a year.

The IAU meeting is scheduled from 14-25 August 2006.

16 August: The committee recommends a definition based on hydrostatic equilibrium. No "cleared the neighborhood" nonsense. They publish their draft proposal.

18 August: The IAU division of planetary sciences (aka, the people who actually deal with planets) endorses the proposal.

Also 18 August: A subgroup of the IAU formed which opposed the proposal. An astronomer in the group (aka, someone who studies stars, not planets) - Julio Ángel Fernández - made up his own "cleared the neighborhood" definition. While most of the membership starts to trickle away over the next week, they remain determined to change the definition.

22 August: The original, hydrostatic equilibrium draft continued to be the basis for discussion. There were some tweaks made (some name changes and adjusting the double-planet definition), but it remained largely the same.

Late on 22 August: Fernández's group manages to get to just over half of the attendance at the (open) drafting meeting, leading to a very "heated" debate between the two sides.

22 to 24 August: The drafting group begins to meet and negotiate in secret. The last that the general attendance of the conference knew, they'll either end up with a vote on a purely hydrostatic definition, or (more likely) no vote at all due to the chaos. Attendence continues to dwindle, particularly among those who are okay with either a hydrostatic definition or none at all.

24 August: The current "cleared the neighborhood" definition is suddenly proposed and voted on on the same day. Only 10% of the conference attendance (4-5% of the IAU membership) is still present, mainly those who had been hanging on trying to get their definition through. They pass the new definition.

It's not generally laypeople who are upset about how it went down, it's IAU members. Many have complained bitterly about it to the press. The IAU's own committee of experts was ignored, in favour of a definition written in secret meetings and voted on by a small, very much nonrandom fraction of people, the vast majority of whom do not study planets.

If there's one thing I hate, it's people who pretend that anyone who opposes the IAU definition does so because they're ignorant morons overcome by some emotional attachment to Pluto, when in reality it's been planetary scientists themselves who have been the definition's harshest critics, because it's an internally self-inconsistent, linguistically flawed, false-premise-based definition that leads to all sorts of absurd results and contradicts terminology that was already in widespread use in the scientific literature.

Comment Re:sign of decline (Score 1) 100

Sometimes. Apple already has their 1 Infinite Loop building and then most of the office buildings nearby along De Anza and a few nearer the middle of town. They're pretty short on space. It makes sense for them to be building a new big building, and the cost difference between building a new boring building and a new shiny building is pretty small. This will let them move a bunch of people who need to collaborate into offices near each other, rather than having them spread across the various De Anza buildings.

From what people were saying when I was at Apple a couple of weeks ago, it's actually coming a bit too late. The company has grown faster than they expected when they started planning and so rather than being able to move everyone from De Anza into IL2, they're having to identify sets of people who need to collaborate and move them, leaving quite a few behind in De Anza. If your company is growing faster than your ability to build office space to house them, that's generally a good sign (though the insane planning permission situation in the Bay Area means that it happens there a lot more often than you'd expect).

Comment Re:The definition is fine (Score 1) 182

Exactly. I think Stern's always been on the right side of this. The original paper that the Stern-Levison parameter comes from has a great system laid out, where you have a bunch of adjectives that you can apply to different bodies based on their varying physical (composition, size) and orbital parameters, and you can use any combination of them as needed. Which seems to me to be so obviously the right solution.

Comment Re:The definition is fine (Score 5, Insightful) 182

Saying pluto is a dwarf planet seems pretty good to me as it gives it a special place among planet like objects already.

If they had simply stopped there, that wouldn't have been a problem. The problem is that they didn't. They declared that dwarf planets aren't planets at all - which is nonsense. Mars has far more in common with Pluto than, say, Jupiter. If anything should have been separated out, it's the gas and ice giants from the rocky/icy planets.

Hydrostatic equilibrium is a very meaningful dividing line to split groupings on. If a body is in hydrostatic equilibrium, it's experienced dramatic geologic change in its history - differentiation, tectonics, internal heating, generally fluids (particularly liquid water), and on and on. It's the sort of place you go if you want to learn about planetary evolution or search for life. If a body is not in hydrostatic equilibrium, it's made of primordial materials, preserved largely intact. It's the sort of place you go to learn about the formation of our solar system and its building blocks.

It's rare that nature gives you such clear dividing lines, but when it comes to planets, it has. It's not perfect - you can (and do) have bodies that straddle the border and are only partially or slightly differentiated. But in general, nature has drawn an obvious line in the sand, and we should respect that.

if the object is really big and clear

Is Earth's orbit clear? No, we have a huge massive object co-orbiting with us. Is Neptune's orbit clear? No, it has Pluto in it. They try their hardest to pretend that the IAU actually chose a "gravitationally dominant" standard, but that's not what they actually put in the definition. The standard in the definition is "cleared the neighborhood".

And it's based on a false premise - that each planet cleared its own neighborhood. Which is just pseudoscience. All of our models show that Jupiter, and to a lesser extent Saturn, cleared most of the solar system, including the vast majority of the clearing around Mars, and a good fraction around Earth (lesser around Venus). Mars did not clear its own neighborhood. Nor is it gravitationally dominant in its neighborhood; the vast majority of asteroids are in orbital resonance with Jupiter and not Mars.

And I've heard some people try to sneak around this by saying "Okay, maybe it isn't gravitationally dominant / cleared its neighbood now, but it has enough of a Stern-Levison parameter that it would have been had Jupiter not existed". First off, that's changing the definition yet again (to "would have cleared its neighborhood if no other planets were there"). But beyond that, it's abuse of the Stern-Levison parameter. The Stern-Levison parameter is built around a body's ability to clear asteroids - bodies with the current size and orbital distribution of our asteroid belt. Not protoplanets. In the early solar system it was the ability to clear protoplanets that caused neighborhoods to be cleared. Jupiter got rid of some really massive things that were forming in and near the inner solar system. There's a reason why our planetary system has such an unusual size distribution: the inner planets start getting bigger, the stop getting bigger, then get small, then debris, then something huge. That "something huge" stripped the building blocks out of the inner solar system, preventing it from becoming dominated by super-Earths. Saturn appears to have been our savior - its (delayed) formation appears to have stopped Jupiter's inward migration.

And even just going with the Stern-Levison parameter - Neptune has a Pluto-sized body in its "neighborhood". Now, Pluto may be small compared to Neptune, but compared to Mars it wouldn't be - yet Mars has a much lower Stern-Levison parameter than Neptune. Again: the only reason Mars doesn't experience stuff like this is because Jupiter cleared its neighborhood for it.

Comment Re:Maybe (Score 5, Interesting) 182

Clearly given that people like Stern have regularly given interviews decrying the decision, and going so far as to call it "bullshit" (can you say that at NASA?), it's clearly not the storm in a teacup that you want to present it as.

What the proponents did was take a term widely used by planetary geologists and have it mean something completely different - akin to dentists suddenly declaring to doctors that the heart is no longer an organ and to stop referring to it as one. And contrary to your presentation of why they did it ("to make it easier to write journal articles") without fail every last supporter I've seen interviewed about their vote has given some variant of the following reason for why they voted the way they did: "I don't want my daughter having to memorize the names of hundreds of planets." Which is so blatantly unscientific it's embarrassing that such a thing would influence their decision at all on a scientific matter.

The IAU vote was narrow, at a conference only attended at all by a fraction of its membership, on the last day when a lot of the people opposed to the definition they passed had already left because it had looked up to that point like there was either not going to be a vote at all , or one on a hydrostatic equilibrium definition - all options that they were fine with. Only 10% of the people who attended were still around.

I have a lot of issues with the last vote, and that's just the start. Here's my full list:

1. Nomenclature: An "adjective-noun" should always be a subset of "noun". A "dwarf planet" should be no less seen as a type of planet than a "dwarf star" is seen as a type of star by the IAU.

2. Erroneous foundation: Current research agrees that most planets did not clear their own neighborhoods, and even that their neighborhoods may not always have been where they are. Jupiter, and Saturn to a lesser extent, have cleared most neighborhoods. Mars has 1/300th the Stern-Levison parameter as Neptune, and Neptune has multiple bodies a couple percent of Mars's mass (possibly even larger, we've only detected an estimated 1% of large KBOs) in its "neighborhood". Mars's neighborhood would in no way would be clear if Jupiter did not exist - even Earth's might not be. Should we demote the terrestrial planets as well?

Note that the Stern-Levison parameter does not go against this, as it's built around the ability of a planet to scatter a mass distribution similar to our current asteroid belt, not large protoplanets.

3. Comparative inconsistency: Earth is far more like Ceres and Pluto than it is like Jupiter, yet these very dissimilar groups - gas giants and terrestrial planets - are lumped together as "planets" while dwarfs are excluded.

4. Poor choice of dividing line: While defining objects inherently requires drawing lines between groups, the chosen line has been poorly selected. Achieving a rough hydrostatic equilibrium is a very meaningful dividing line - it means differentiation, mineralization processes, alteration of primordial materials, and so forth. It's also often associated with internal heat and, increasingly as we're realizing, a common association with subsurface fluids. In short, a body in a category of "not having achieved hydrostatic equilibrium" describes a body which one would study to learn about the origins of our solar system, while a body in a category of "having achieved hydrostatic equilibrium" describes a body one would study, for example, to learn more about tectonics, geochemistry, (potentially) biology, etc. By contrast, a dividing line of "clearing its neighborhood" - which doesn't even meet standard #2 - says little about the body itself.

5. Mutability: Under the IA definition, what an object is declared as can be altered without any of the properties of the object changing simply by its "neighborhood" changing in any of countless ways.

6. Situational inconsistency: (Related) An exact copy of Earth (what the vast majority of people would consider the prototype for what a planet should be), identical down to all of the life on its surface, would not be considered a planet if orbiting in the habitable zone of a significantly larger star (harder to clear zone), or a young star (insufficient time to clear), a star without a Jupiter equivalent (no assistance in clearing), or so forth.

7. Ambiguous definition: There is still no consensus on what defines having "cleared the neighborhood" - in particular, what the "neighborhood" is.

8. Lack of terminology: Exoplanets - indeed, including any potential Earthlike planets - are arbitrarily declared to not be planets. Meaning that exoplanets are not actually planets according to the IAU. Ironically, the IAU has an exoplanets working group called "Executive Committee Working Group Public Naming of Planets and Planetary Satellites"... tasked with naming things that it doesn't consider planets.

9. Inability to describe exoplanets even if not ruled out: There is no way that even if exoplanets hadn't been arbitrarily ruled out that one could ascertain whether a body has met a "cleared the neighborhood" via observations from Earth. A definition based on hydrostatic equilibrium would be far easier to ascertain.

10. Failure to address binary objects. Self-explanatory.

11. Unscientific motivation: The primary reason cited by everyone interviewed thusfar for choosing an exclusive standard over an inclusive standard is along the lines of, "It would be too hard for schoolchildren to memorize the names of all of them". This is such a blatantly unscientific standard that it doesn't even bear going into, and leads to absurd consequences when applied to other fields, such as the AMA declaring that there's only 8 bones in the human body and all others are "dwarf bones" that aren't real bones, or the USGS declaring that there's only 8 rivers in the world and all others are "dwarf rivers" that aren't real rivers, all for the purpose of making things easier for students to memorize.

12. Resistance to accept the diversity of reality: In every scientific field, the universe continually presents those making discoveries with a wide range of diversity. This is almost universally accepted in an inclusive manner, subdividing groups into subgroups, and subdividing those further. We will continue to find new types of planetary bodies in a wide range of diversity - large terrestrial planets, dwarf-scale planets, gas giants, ice giants, hot jupiters, super-earths, water worlds, supercomets, extremely large bodies orbiting as moons, planets without parent stars, and so forth. Rather than trying to hide diversity, science is supposed to embrace it.

13. Discouragement of exploration among the public: The term "planet" has a deep and meaningful place in the public mind, as a body worthy of exploration, perhaps even eventually colonization. "Small solar system body" does not. Public support for scientific exploration to these diverse and fascinating worlds should not be discouraged by poorly chosen names. Quite to the contrary, it would be worthwhile if fascinating worlds the diameter of Mercury, like Ganymede and Titan, were given the same level of attention with a label such as "planetary moons" (note again: an "adjective-noun" is a subcategory of "noun").

14. Distrust of the scientific population among the public: Images of discontent scientists sniping at each other and divisive voting on controversial "truths" have a profoundly negative consequence on the public's view of the scientific community. Anyone who spends any time looking at any of the internet commentary on the dwarf planet decision will find them full of comments along the lines of "Scientists can't even agree about whether Pluto is a planet, why should we trust them about global warming?" I wish this were hyperbole, but I've seen it far too often to ignore it.

15. Poor voting statistical representation: While 4% of the IAU would make up a statistically significant sample if chosen at random, the people involved were not "chosen at random". The people present were "those who could take a trip to Prague and didn't have to leave before the closing ceremony", which leads to numerous potential biases. As Owen Gingerich noted, "There were 2,700 astronomers in Prague during that 10-day period. But only 10% of them voted this afternoon. Those who disagreed and were determined to block the other resolution showed up in larger numbers than those who felt 'oh well, this is just one of those things the IAU is working on'." In this day in age where electronic balloting is simple to implement, that the IAU would be willing to make charged decisions on a 60% vote of a non-random 4% of the membership is highly inappropriate.

16. Wrong people making the decision: Only a small percentage of the IAU are planetary scientists, who are the actual people who should be the ones making decisions about what makes up a planet. Letting people who study stars decide what counts as a planet is akin to letting dermatologists decide how to treat a heart condition - hey, a doctor's a doctor, right? Just like when meteorologists or chemists make claims that global warming isn't real - a scientist is a scientist, right?

17. Making the decision before gathering the data: For most of the history of humankind's knowledge of Ceres and Pluto, we have not had any missions underway to explore them. They were just poorly resolved points of light. But at the time of the IAU vote, at long last, we had launched New Horizons to Pluto and were preparing Dawn for launch to Ceres. Yet it was at this narrow interval, between actually launching craft to gather data about the bodies, but not having them arrive, that the IAU decided to make their declaration. Making scientific declarations about objects that you know little about when vast amounts of data are coming in the pipeline - data that could influence members making the decision - is profoundly unscientific.

18. Not following through on its own declarations: The IAU decision declared that it would continue to name new dwarf planets as new data comes in. Yet there's not been a new declaration since 2006. We have far better data than we had to make declarations of dwarf planets in 2006, and there's a long list of them awaiting declaration - where's the IAU? For example, Quaoar's diameter is known to a mere ±5 km and is significantly larger than Ceres. Even the lower bound of 2007 OR10 is larger than Quaoar. Why aren't they and countless others on the list? It increasingly looks like the IAU just wanted to make its declaration purely for demotion purposes rather than for its stated purpose of categorization.

19. Disagreement with the IAU is so intense that those who disagree are simply ignoring it - a process that began in the literature almost immediately (example: http://arxiv.org/abs/0712.2198), let alone in conversations with the public (example: any press conference with the New Horizons team). This not only renders the definition meaningless but serves to undercut the IAU's authority in other issues (such as naming).

20. Beyond the major points I could go into a bunch of nitpicks about the poor wording the IAU put forth in general. Such as how Jupiter doesn't actually meet their definition because the sun and Jupiter orbit a point (the sun-Jupiter barycentre) that spends most of its time outside the sun. It's often mentioned how Neptune doesn't meet their definition because of their use of the term "cleared the neighborhood" (implying removing all other large objects) rather than being gravitationally dominant / forcing other bodies into resonance. But because of that, even the Earth doesn't meet that definition because Earth's moon - which orbits the sun as much as the Earth does, despite also orbiting the Earth - is not cleared. Indeed, the IAU definition accepts that a body can both "orbit the sun" and be "a satellite" (see rule #2), yet they don't mention the satellite exclusion in rule #1, thus making Earth fail section (c) of #1. Using a "gravitationally dominant" definition rather than a "cleared the neighborhood" definition would have fixed this problem, but they didn't. Even if one chooses to ignore this, Earth's moon (despite being larger than most dwarf planets) gets classed not as a dwarf planet or even as a moon, but a "small solar system body", because - as they observe in #2 that objects can be both satellites and orbit the sun as well - it fails the conditions in #1 and #2 but meets the orbital condition in #3, thus is a "small solar system body". If you choose not to ignore that they choose the wording "cleared the neighborhood" rather than "gravitationally dominant" in #1, then Earth too is a "small solar system body". These are, of course, nitpicks, and are more ambiguous than the previous points; they're presented simply to show how hastily the current definition was come up with and how poorly thought out it is.

Submission + - Scientists Seek To Reinstate Pluto As A Planet - And Many More

Rei writes: After several years of publicly complaining about the "bullshit" decision at the IAU redefining what comprises a planet, New Horizons programme head Alan Stern and fellow planetary geologists have put forth a new definition which they seek to make official, basing planethood on hydrostatic equilibrium. Under this definition, in addition to Ceres, Pluto and other Kuiper Belt objects, large moons like Titan and Europa, as well as our own moon, would also become planets; "planet" would be a physical term, while "moon" would be an orbital term, and hence one can have a planetary moon, as well as planets that orbit other stars or no star at all (both prohibited under the current definition).

The paper points out that planetary geologists already refer to such bodies as planets, citing examples such as a paper about Titan: “A planet-wide detached haze layer occurs between 300-350 km above the surface; the visible limb of the planet, where the vertical haze optical depth is 0.1, is about 220 km above the surface”

Comment Re:will probably take off with next gen hardware (Score 1) 147

Hololens is not VR

Indeed. AR doesn't seem to trigger the same motion sickness responses as VR, because you retain all of the visual cues from the real world.

Microsoft is once again creating a product that nobody will use.

Microsoft has created a technology that anyone can use without feeling motion sick, but you think that it will lose in the marketplace to one that about 80% of people can use without feeling motion sick? That's an interesting perspective.

Comment Re:It's just too expensive for the hardware (Score 1) 147

It's not so clear with 3D. It's something of a misnomer to call current displays 2D and this kind of VR interface 3D. Both provide a subset of the dozen or so cues that the human brain uses to turn inputs into a 3D mental model. They both, for example, manage occlusion and distance blurring, but neither manages (yet) to correctly adjust the focal depth of parts of the image that are further away. Motion sickness is caused by disagreements between some of these cues and between the other cues that you use to build your mental model of the world. VR adjusts the image based on your head position (though latency here can cause problems as the visual signal and the inner ear signal come at different times), but it turns out that humans have a very strong notion of body image, so if they don't correctly track your arm positions and update them in the game then this causes nausea in a lot of people.

Unfortunately for the 3D film and game industry, it's not the case that simply adding more cues reduces the risk of motion sickness. It turns out that a third-person perspective on a 2D display is one of the minima for the percentage of the population to experience motion sickness. Move to first person, and this gets worse, though it's still a tiny percentage (some people can't play FPS games for more than a few minutes without feeling sick). Add a few more visual cues and you get a lot more people feeling sick. There's obviously a minimum when you get all of the cues right, because otherwise people would spend their entire lives experiencing motion sickness, but so far none of the mainstream 3D systems have found another point that's close to the 2D display. If you're going to develop a first-person game, and you can either develop it for a technology that 99% of humans can use without feeling sick, or spending more money to develop it for a technology that 80% can use, which would you do?

Slashdot Top Deals

Imagination is more important than knowledge. -- Albert Einstein