The preferred giant impact model has a Mars-sized impactor with a core-to-mantle ratio equal to the Earth's, with approximately 30% of its mass being in an iron core (http://adsabs.harvard.edu/abs/2004Icar..168..433C). Mars is ~1/6th the Earth's mass. In this impact, the material liberated that eventually forms the moon is iron poor, as the iron core of the impactor sinks into the Earth. That has been the interpretation as to why the Moon's iron core is so small (no more than 3% its total mass), so in this sense the giant impact model produces a satisfactory outcome.
Some fraction of the lunar surface is accumulated over the 4 billion years since the Moon formed, but this layer is thought to be very thin, and the meteorites + Apollo samples we use to measure the moon's isotopic ratios come from a range of depths that probe significantly deeper than this surface layer.
The fine-tuning argument comes from the fact that for an arbitrary combination of impactor + Earth mass, impact angle, velocity, etc, you'd expect a scatter in the isotope ratios consistent with the typical scatter measured between other bodies in the solar system (say that between Mars and the Earth). Fine-tuning is often employed in intelligent design arguments as they rely on the anthropic principle, but as there's no reason to require the Earth and Moon to have identical isotopic compositions to explain the existence of life, there is no particular reason to favor any particular outcome over the myriad of other outcomes for this particular measurement.