Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MonoQwen2-VL-v0.1 represents the inaugural visual document reranker aimed at improving the quality of visual documents retrieved within Retrieval-Augmented Generation (RAG) systems. Conventional RAG methodologies typically involve transforming documents into text through Optical Character Recognition (OCR), a process that can be labor-intensive and often leads to the omission of critical information, particularly for non-text elements such as graphs and tables. To combat these challenges, MonoQwen2-VL-v0.1 utilizes Visual Language Models (VLMs) that can directly interpret images, thus bypassing the need for OCR and maintaining the fidelity of visual information. The reranking process unfolds in two stages: it first employs distinct encoding to create a selection of potential documents, and subsequently applies a cross-encoding model to reorder these options based on their relevance to the given query. By implementing Low-Rank Adaptation (LoRA) atop the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 not only achieves impressive results but does so while keeping memory usage to a minimum. This innovative approach signifies a substantial advancement in the handling of visual data within RAG frameworks, paving the way for more effective information retrieval strategies.
Description
Pinecone Rerank V0 is a cross-encoder model specifically designed to enhance precision in reranking tasks, thereby improving enterprise search and retrieval-augmented generation (RAG) systems. This model processes both queries and documents simultaneously, enabling it to assess fine-grained relevance and assign a relevance score ranging from 0 to 1 for each query-document pair. With a maximum context length of 512 tokens, it ensures that the quality of ranking is maintained. In evaluations based on the BEIR benchmark, Pinecone Rerank V0 stood out by achieving the highest average NDCG@10, surpassing other competing models in 6 out of 12 datasets. Notably, it achieved an impressive 60% increase in performance on the Fever dataset when compared to Google Semantic Ranker, along with over 40% improvement on the Climate-Fever dataset against alternatives like cohere-v3-multilingual and voyageai-rerank-2. Accessible via Pinecone Inference, this model is currently available to all users in a public preview, allowing for broader experimentation and feedback. Its design reflects an ongoing commitment to innovation in search technology, making it a valuable tool for organizations seeking to enhance their information retrieval capabilities.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Anyscale
Apify
Box
Cloudera
Databricks Data Intelligence Platform
Datadog
Datavolo
Flowise
Google Cloud Platform
Integrations
Amazon SageMaker
Anyscale
Apify
Box
Cloudera
Databricks Data Intelligence Platform
Datadog
Datavolo
Flowise
Google Cloud Platform
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$25 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
LightOn
Founded
2016
Country
France
Website
www.lighton.ai/lighton-blogs/monoqwen-vision
Vendor Details
Company Name
Pinecone
Founded
2019
Country
United States
Website
www.pinecone.io/blog/pinecone-rerank-v0-announcement/