Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
In recent years, high-performance computing has become a more accessible resource for a greater number of researchers within the scientific community than ever before. The combination of quality open-source software and affordable hardware has significantly contributed to the widespread adoption of Beowulf class clusters and clusters of workstations. Among various parallel computational approaches, message-passing has emerged as a particularly effective model. This paradigm is particularly well-suited for distributed memory architectures and is extensively utilized in today's most demanding scientific and engineering applications related to modeling, simulation, design, and signal processing. Nonetheless, the landscape of portable message-passing parallel programming was once fraught with challenges due to the numerous incompatible options developers faced. Thankfully, this situation has dramatically improved since the MPI Forum introduced its standard specification, which has streamlined the process for developers. As a result, researchers can now focus more on their scientific inquiries rather than grappling with programming complexities.
Description
All components of a URL, including scheme, user, password, host, port, path, query, and fragment, can be accessed through their respective properties. Every manipulation of a URL results in a newly generated URL object, and the strings provided to the constructor or modification functions are automatically encoded to yield a canonical format. While standard properties return percent-decoded values, the raw_ variants should be used to obtain encoded strings. A human-readable version of the URL can be accessed using the .human_repr() method. Binary wheels for yarl are available on PyPI for operating systems such as Linux, Windows, and MacOS. In cases where you wish to install yarl on different systems like Alpine Linux—which does not comply with manylinux standards due to the absence of glibc—you will need to compile the library from the source using the provided tarball. This process necessitates having a C compiler and the necessary Python headers installed on your machine. It is important to remember that the uncompiled, pure-Python version is significantly slower. Nevertheless, PyPy consistently employs a pure-Python implementation, thus remaining unaffected by performance variations. Additionally, this means that regardless of the environment, PyPy users can expect consistent behavior from the library.
API Access
Has API
API Access
Has API
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
MPI for Python
Website
mpi4py.readthedocs.io/en/stable/
Vendor Details
Company Name
Python Software Foundation
Country
United States
Website
pypi.org/project/yarl/