JOpt.TourOptimizer
If you are developing software for Logistics Dispatch Solutions, which contain challenges:
-For staff dispatching, such as sales reps, mobile service, or workforce?
-For truck shipment allocation in daily transportation and logistics (scheduling, tour optimization, etc.)?
-For waste management and District Planning?
-Generally, highly constrained problem sets?
And your product does not have an automized optimization engine?
Then JOpt is the perfect fit for your product and can help you to save money, time, and workforce, letting you concentrate on your core business.
JOpt.TourOptimizer is an adaptable component to solve VRP, CVRP, and VRPTW class problems for any route optimization in logistics or similar fields. It comes as a Java library or in Docker Container utilizing the Spring Framework and Swagger.
Learn more
Criminal IP
Criminal IP is a cyber threat intelligence search engine that detects vulnerabilities in personal and corporate cyber assets in real time and allows users to take preemptive actions. Coming from the idea that individuals and businesses would be able to boost their cyber security by obtaining information about accessing IP addresses in advance, Criminal IP's extensive data of over 4.2 billion IP addresses and counting to provide threat-relevant information about malicious IP addresses, malicious links, phishing websites, certificates, industrial control systems, IoTs, servers, CCTVs, etc.
Using Criminal IP’s four key features (Asset Search, Domain Search, Exploit Search, and Image Search), you can search for IP risk scores and vulnerabilities related to searched IP addresses and domains, vulnerabilities for each service, and assets that are open to cyber attacks in image forms, in respective order.
Learn more
pandas
Pandas is an open-source data analysis and manipulation tool that is not only fast and powerful but also highly flexible and user-friendly, all within the Python programming ecosystem. It provides various tools for importing and exporting data across different formats, including CSV, text files, Microsoft Excel, SQL databases, and the efficient HDF5 format. With its intelligent data alignment capabilities and integrated management of missing values, users benefit from automatic label-based alignment during computations, which simplifies the process of organizing disordered data. The library features a robust group-by engine that allows for sophisticated aggregating and transforming operations, enabling users to easily perform split-apply-combine actions on their datasets. Additionally, pandas offers extensive time series functionality, including the ability to generate date ranges, convert frequencies, and apply moving window statistics, as well as manage date shifting and lagging. Users can even create custom time offsets tailored to specific domains and join time series data without the risk of losing any information. This comprehensive set of features makes pandas an essential tool for anyone working with data in Python.
Learn more
yarl
All components of a URL, including scheme, user, password, host, port, path, query, and fragment, can be accessed through their respective properties. Every manipulation of a URL results in a newly generated URL object, and the strings provided to the constructor or modification functions are automatically encoded to yield a canonical format. While standard properties return percent-decoded values, the raw_ variants should be used to obtain encoded strings. A human-readable version of the URL can be accessed using the .human_repr() method. Binary wheels for yarl are available on PyPI for operating systems such as Linux, Windows, and MacOS. In cases where you wish to install yarl on different systems like Alpine Linux—which does not comply with manylinux standards due to the absence of glibc—you will need to compile the library from the source using the provided tarball. This process necessitates having a C compiler and the necessary Python headers installed on your machine. It is important to remember that the uncompiled, pure-Python version is significantly slower. Nevertheless, PyPy consistently employs a pure-Python implementation, thus remaining unaffected by performance variations. Additionally, this means that regardless of the environment, PyPy users can expect consistent behavior from the library.
Learn more