Please create an account to participate in the Slashdot moderation system


Forgot your password?
Take advantage of Black Friday with 15% off sitewide with coupon code "BLACKFRIDAY" on Slashdot Deals (some exclusions apply)". ×

Comment Re:Or just make the diesels hybrids (Score 2) 173

And even the best public transport system generally isnt going to start and stop *exactly* where you need it, so there still is going to be *some* walking. Which some people with disabilities or health problems simply can't manage. And to achieve a good public transport system - with frequent stops, densely placed stops, relatively direct routes and affordable prices - is entirely dependent on population density far more than it is on "will". In places with high density, it's a relatively straightforward process to have a good public transport system. In places with moderate to low density, it can be difficult to nearly impossible. And weaknesses in public transport system are a viscious cycle: the less frequent the stops, the further spaced out they are, the longer the transit times, and the more expensive the rides - the fewer people will ride them. The fewer that ride the less frequent you have to have the stops, the further apart they need to be, the less direct the routes, and the less affordable the prices.

Comment Re:Cost of access is key. (Score 1) 330

That was not my point. Ofc we can improve ISP. No idea how much that improves either 'performance' or drops price.

It improves performance a *lot*. As for price, it depends on how expensive that rocket system is. For first stages, an improvement in ISP's effect on the size of the rocket isn't that much greater than linear. But the further up the delta-V chain the engine is used, the more of an impact it has on everything that was used to get it there. An extra hundred sec ISP on a first stage might reduce the system mass by a third; on a second stage up to LEO, maybe cut it in half; on a kick stage for a Mars transfer orbit, maybe cut it by two thirds. On an ascent stage from the surface of Mars... well you get the idea. Shrinking down a rocket to a small fraction of its size - fuel, tankage, and engines - well, that's really significant. ISP is very, very important for upper stages. So you can afford to pay quite a bit for those top stages if it improves their performance. Just not an "unlimited" amount.

There is no way a high tech electrical engine will improve its performance by 10% regardless how much money or time you put into it: the efficiency is already between 98.5% - 99.5%, up to 99.9% in some cases.

This is getting a bit offtopic, but at least the electric engines in EVs don't usually run at nearly that high. Depending on the type they might average 85 to 94% on average. It varies over their load cycle.

Regarding rockets: there is simply not much margin anymore in changing the form of the exhaust tube, burn chamber etc

Actually you can. The general principles of how rocket engines work are fixed, of course - your exhaust will never exceed its local speed of sound in the throat, and then you want to expand it as close to ambient pressure as you want. But the details vary greatly. There's bell nozzles, linear nozzles, annular nozzles, aerospikes, throatless nozzles, atmospheric wake compression, and on and on. There's tons of different ways - developed, in development, and in theory - to pump and inject your propellants - where they need to be pumped at all. Even many propellants that are traditionally thought of as being in one state can be implemented in other states. There's various ways - developed, in development, and in theory - to prevent nozzle erosion. To improve regeneration. To reduce mass. And on and on and on. Rocket combustion is a rather complex thing and we're still trying to get a handle on it. Do you know that we still really don't know how aluminum burns in solid rocket propellant? There's something like five different competing theories. I mean, things like this are a Big Freaking Deal(TM), especially when such small improvements in upper stage ISP have such significance for lower stage mass. And even on your lower stages there's a lot of things that have a big effect on your system cost. For example, how to stop resonant shocks from ripping them up - a lot of people don't realize that one of the main benefits of adding aluminum first stage to propellant mixes is that the droplets of burning aluminum damp shocks. (yeah, it increases ISP too by raising the exhaust temperature, but it also has disadvantages, such as not contributing to expansion, slowing down gases (particularly near the nozzle), and impacting/eroding the throat (or even forming an accumulating slag)

Re, nuclear+chemical. There are proposals for this. The main issue isn't efficiency - the extra chemical energy doesn't make that much of a difference - but thrust. The downside to nuclear thermal is that the reactor is so heavy (fission is like that, unfortunately) that the mass ratio is only something like 3-4:1. That's really bad (you generally get 15-20:1 or even better for a chemical first stage). So the approach is to inject oxygen early in the ascent phase for added thrust, but only run on hydrogen higher up when gravity losses are lower. I'm really not that sanguine about nuclear thermal rockets getting a serious development program any time soon, though. The public overestimates the risk, of course - not only am I sure they'd well seal the fuel elements against whatever damage would be incurred by explosion or reentry, but there's the simple fact that the fuel is "fresh", not contaminated with the more hazardous actinides. But it's going to be a hard sell. And a really hard development project, if they ever did try again. Gigawatt-scale flying nuclear reactors that pose radiation hazards during assembly and test aren't exactly childs' play.

Comment Re:The guy aint no Sagan... (Score 1) 330

You forgot to exclude operational expenses.

Yes, people to run robots and comm time on the DSN. We're not talking about massive expenses here. The real expenses are the capital costs.

And also didn't mention that you can't just lob chunks of metal straight to Earth's surface,

Actually, you really just can. Even random rocks from space - not shaped for optimal entry shape, not cemented together by anything yet what nature chose to gie them - do this all the time. They have to be between a certain size range (too little and the whole thing ablates; too large and it explodes, either in the atmosphere or on impact), but the random creations of nature do it; delberately shaped and sintered projectiles should have no trouble with it, with (proportional to their mass) relatively little burnoff.

You would, of course, need a rather large area designated as the impact area; even with very precise aiming, by the time they get to Earth and undergo reentry the random variables will spread them out over a sizeable chunk of land. A large salar might be ideal, since they get resurfaced periodically so the impacts wouldn't be damaging the landscape.

By your same logic, the mining of minerals on Earth would be zero dollars per gram if the equipment was solar powered and automated

It's almost as if I didn't discuss capital and ongoing costs in my above post.

Launch costs really are key to the rate of development at the very least, in that they limit the rate in which funding can be raised for the necessary exploratory and test craft to be launched. Even if the economics for operating a mine on a NEO works out really well at present launch costs, you have to prove that you can do it before you can raise the billions to build it. And to prove that you can do it you have to launch a number of missions while you're still relatively poorly funded. They face the same problem that Bigelow has faced - a probably reasonable business plan but the early phases hinging around factors that they don't control.

It does nobody any good to pretend that the lack of a space economy is because investors are cowards and morons

I think you need to go back and read my last post again, particularly all of the "it's too early to say"/""we don't know"/"but time will tell"/etc lines. I'm not saying that at all. I'm saying that there very well could be a compelling case for asteroid mining even without any radical changes in space technologies. But there's a great deal of work to prove that before we can get to that point.

Comment A field full of two layers of firefighters. (Score 1) 106

As mentioned previously, my mental model of semiconductors and the like is a fireman's water brigade, were either the majority of the line has buckets or empty hands.

It helps if, instead of a line, you think of a LOT them standing in a two-D array (like in the yard of the burning building, or a section of a parade that's stopped to do a little demo). It's really three-D, but we'll want to use up/down for something else in a bit...

For metallic electron conduction everybody has TWO buckets, one for each hand, and when a guy by the fire throws a buck of water on it (bucket and all) on the fire, a guy farther back immediately tosses him a bucket, the guy behind him essentially instantly throws HIM a bucket, andso on. Hands are effectively never empty.

For semiconductors, imagine two layers of these guys, the second standing on the firsts' shoulders or on a scaffold right above them, and about enough buckets for each of the guys on the ground to have two and the guys on the scaffold to have none. (There's actually many layers of scaffold, but the rest are so far up that it's hard to get a bucket to them, so they mostly just stand around.)

Usually nothing useful is happening. Everybody on the bottom layer has both hands full of buckets, and it's hard to hand a bucket up to the guys on the top.
  - Electron-hole pair creation: Somebody comes up with the energy to heave a bucket up to the guys on the upper layer, leaving a guy with one hand empty in the lower layer. (Maybe somebody (a photon, for instance) comes along with a lacrosse stick and whacks a bucket up to a guy in the top row - dying or becoming exhausted and much weaker from the effort.) Now you've got one guy with a free hand in the lower layer (a hole) and one bucket on the top layer (a free electron).
  - Electron conduction in a semiconductor is that bucket on the upper layer. The guys there can hand it around easily, or toss it along a diagonal until it would hit a guy - who catches it. They're all standing on accurately-spaced platforms so the bucket can go quite a way before somebody has to catch it. Suppose there's a slope to the yard, with the fire at the bottom. Then, if tossed too far, the bucket might pick up substantial speed and knock the guy who catches it out of place (electromigration), or fall down to the lower layer and knock another bucket out of somebody's hand and bounce, ending up with TWO buckets on the upper layer and an empty hand below (avalanche electron-hole creation).
  - Hole conduction is when you've got an empty hand on the bottom layer: Now it's easy for a guy with two buckets to hand a bucket to a guy with only one, exchanging a bucket for an empty hand. But now the guy whose hand had been empty has two buckets and nobody in the downhill/toward-fire direction to hand a bucket to, while the guy who handed it off has an empty hand and can grab a bucket from somebody farther uphill / closer to the water source - or beside him, or diagonally. So "empty-handedness" (a hole) can move around as a persistent entity while the individual buckets gradually work their way in the general direction of the fire, only making a bit of progress "when a hole comes by". Though the water makes progress toward the fire, the action is all where the holes are making progress away from the fire.
  - Electron-hole annihilation: Somebody has a bucket on the upper layer when a guy below him has an empty hand. So he drops the bucket. CLANG! Ouch! Now there's no "free bucket" on the upper layer, no free hand on the lower layer, and the energy of their separation went somewhere else (knocking the guy sideways so he bumps into his neighbor and generally making the guys vibrate, "creating a guy with a lacrosse stick who runs off to whack at buckets", etc.)
  - P-type doping: A guy in the bottom layer had a sore hand and only brought one bucket to the fire, thus having a free hand from the start. He can take a bucket when a neighbor pushes it at him (the hole moves away). But he'd like to hand it off and have his sore hand free again (so holes tend to stick around at his site). It's lots easier to "make a free hole" by convincing him to hold a bucket in his sore hand than by tossing a bucket up to the guys on the scaffold, but does take a little effort.
  - N-type doping: One of the guys on the upper level really likes to hold a bucket, so he brought one with him. The guy next to him can grab it from him, but if another comes along he'll try to hold on to it a bit until somebody shames him into letting go again or wrestles it from him. It's lots easier to get him to let you use his bucket for a while than to pull one up from the guys on the ground, but it does take a little effort.
  - Tunneling through a potential barrier: There's a ridge across the field. It's hard to hand buckets up to the guys on the ridge, so they don't flow across it very well (unless someone at the side of the field is pushing the buckets really hard...) Occasionally the guys on one side of the ridge hand a bucket through the legs of the guys standing on the ridge to the guys on the other side.
And so on. B-)

I'm keenly interested in finding more material to read up on the observed Hall effect measurements. Thanks again for your contribution to the discussion.

The wikipedia article on the hall effect has a section on the hall effect in semiconductors, but both it and the reference it uses start from treating the hole as a charge carrier with a fixed charge and a mobility different from a free electron, and just computes formulai from there.

If the hall effect on hole currents were fallout from the hall effect on the individual electron bucket-transfers, rather than the hole acting like a positive charge carrier in its own right, you'd think it would go the other way

Comment Re:seriously? (Score 1) 82

Are the other variants more dialectal? In addition to huoji ( / ) (fire chicken) what I read states that there's also qimianniao ( / ) (seven-faced bird), tujinji ( / ) (cough up a brocade chicken) and tushouji ( / ) (cough up a ribbon chicken)

(hope Slashdot doesn't mess up the characters)

Comment Re:seriously? (Score 1) 82

On the other hand I would want to talk to Archimedes

You speak ancient Greek and can communicate with the dead? Okay, I'm impressed. ;)

Thanksgiving trivia for the day: the word for "turkey" comes from extensive and long-running confusion about where the bird came from. For example, in English it's called Turkey. In Turkey it's called "hindi", referring to India. In India it's called Peru. In Peru it's called "pavo", referring to peacocks, which are native to south and southeast asia, such as India (cyclic there), Cambodia, Malaysia, etc. In Cambodia (Khmer) it's called "moan barang", meaning "French chicken", while in Malaysia it's referred to as "ayam belanda", meaning "Dutch chicken". Both of those in turn think it comes from India: in French it's called "dinde" (from "poulet d’Inde", aka "chicken of India"), while in Dutch it's "kalkoen", referring to a place in India. Greek has a number of local dialectal names, such as misírka, meaning "egyptian bird", while in Egypt it's called dk rm, meaning the Greek bird (even though the latter part of the name derives from Rome - the Italians, by the way, thinking it comes from India). One variant of Arabic even credits it to Ethiopia.

A couple languages deserve special credit for their words:

Best accuracy: Miami indian - nalaaohki pileewa, meaning "native fowl"
Worst accuracy: A tie between Albanian (gjel deti, "sea rooster"); Tamil (vaan kozhi, "sky chicken"); and Swahili (bata mzinga, "the great duck")
Most creative: Mandarin - many names with meanings such as "cough up a ribbon chicken" and "seven-faced bird"
Least creative: Blackfoot: ómahksipi'kssíí, meaning "big bird". Hmm...

Comment Re:The guy aint no Sagan... (Score 1) 330

Except that your cost examples are based around the price of rocks brought back as a "oh and we're going to do this too" mission add-on. It would be like as if I flew to America to visit my grandmother for Christmas via purchasing a $700 plane ticket and while I was there I bought a $15 sweater and brought it back, and you said, "See, she paid $715 to go to America and buy a sweater - American sweaters are unjustifiably expensive!" You simply cannot take the cost of the Apollo mission, divide by the mass of rocks returned, and pretend that that's anything even remotely close to the cost of retrieval per gram.

What's the actual cost of space mining? It's too early to say. But the mining of NEOs could be as little as *zero* dollars per gram (excluding capital costs and maintenance), insomuch as it would be possible to fire sintered minerals (using solar power) via a coilgun onto an aerocapture trajectory. You don't actually have to have a rocket to bring them back. What would the capital costs be like? That we don't know - again, it's too early to say. But it's normal for large mines on Earth to cost billions of dollars, and what one can do with a large mine on Earth one could do with a vastly smaller mine on a NEO due to the superb mineral concentrations on some of them. There are a number of peer-reviewed papers putting forth that it could work out to be economical (I was reading one from the USGS just the other day) as a result of this.

But time will tell. It's going to take a lot more basic research and engineering before we can get a good sense of just what it would cost to get what sort of throughput of what sort of minerals.

Comment Another useful vacuum tube: Thermionic converter. (Score 1) 106

Another vacuum tube technology with current applications and substantial advantages over semiconductor approaches to the same problems is the Thermionic Converter. This is a vacuum-tube technology heat engine that turns temperature differences into electric power - by boiling electrons off a hot electrode and collecting them, at a somewhat more negative voltage (like 0.5 to 1 volt), at a cooler electrode.

Semiconductor approaches such as the Peltier Cell tend to be limited in operating temperature due to the materials involved, and lose a major fraction of the available power to non-power-producing heat conduction from the hot to the cold side of the device. Thermionic converters, by contrast are vacuum devices, and inherently insulating (with the heat conducted almost entirely by the working electrons, where it is doing the generation, or parasitic infrared radiation, which can be reflected rater than absorbed at the cold side.) They work very well at temperatures of a couple thousand degrees, a good match to combustion, point-focused solar, and nuclear thermal sources.

Thermionic converters have been the subject to recent improvements, such as graphine electrodes. The power density limitation of space charge has been solved, by using a "control grid" to encourage to charge to move along from the emitter to the collector and magnetic fields to guide it (so it doesn't discharge the control grid and waste the power used to charge it).

Current thermionic technology can convert better than 30% of the available thermal energy to electrical power and achieves power densities in the ballpark of a kilowatt per 100 square cm (i.e. a disk about 4 1/2 inches in diameter). That's a reasonably respectable carnot engine. This makes it very useful for things like topping cycles in steam plants: You run it with the flame against the hot side so it is at the combustion temperature, and the "cold" side at the temperature of the superheated steam for your steam cycle. Rather than wasting the energy of that temperature drop (as you would with a pure steam cycle) you collect about a third of it as electricity.

It also beats the efficiency of currently available solar cell technology (and the 33.4% Shockleyâ"Queisser theoretical limit for single-junction cells), if you don't mind mounting it on a sun-tracker. Not only that, but you can capture the "waste heat" at a useful temperature without substantial impairment to the electrical generation or heat collection, and thus use the same surface area for both generation and solar heating. (Doing this with semiconductor solar cells doesn't work well, because they become far less efficient when running a couple tens of degrees above room temparature.)

Comment Re:Space-based Economy (Score 2) 330

As usual, "pop science" news overstated the case. We know that there's ppm quantities of water in most lunar regolith, but that's not what people usually talk about. There's also a good degree of confidence that there's a lot of *hydroxyl* group in a lot of places on the moon. But the connection between that and the group being specifically water is much weaker - and many missions sent to detect water in likely areas have failed. The best evidence for water have come from Chandrayaan and LRO, examining craters that were considered likely to find ice. They have both failed to find "slabs" of ice in the crater, but found evidence for ice grains in the regolith - about 5% according to LRO. On Earth that would be considered dry soil, but it's something at least.

Of course, if you're constraining yourself to such craters, you're really constraining where you can go. On the general lunar surface, the sun bakes water out of the regolith.

Iron, aluminum, and titanium are very useful for making things

They're all tightly locked up as oxides, without the raw materials that we use to refine them on Earth being available. There are however tiny grains of raw iron in the regolith, so there is some potential to comb it out magnetically. Still, asteroids present by far better resource options in much greater concentrations.

There really is just no reason to do your work in a gravity well as deep as the moon's, and then have to break out of it, when you can just mine NEOs. Yes, it's "half the gravity of Mars", but it's vastly more than asteroids. Rockets with a couple thousand spare m/s delta-V don't just grow on lunar trees.

Comment Re:Space-based Economy (Score 1) 330

The moon's surface is kind of boring, as far as geology goes. Aluminum oxide, titanium oxide, iron oxide, silicon dioxide... by and large it's stuff that's really common on Earth. And not much of the common stuff that's super-useful, like water. And really, it's way more of a gravity well than is ideal to have.

It is your destiny. - Darth Vader