Catch up on stories from the past week (and beyond) at the Slashdot story archive

 



Forgot your password?
typodupeerror
Trust the World's Fastest VPN with Your Internet Security & Freedom - A Lifetime Subscription of PureVPN at 88% off. Also, Slashdot's Facebook page has a chat bot now. Message it for stories and more. ×

Submission + - Scientists Finally Turn Hydrogen Into a Metal, Ending a 80-Year Quest (arstechnica.com)

An anonymous reader writes: In 1935, scientists predicted that the simplest element, hydrogen, could also become metallic under pressure, and they calculated that it would take 25 GigaPascals to force this transition (each Gigapascal is about 10,000 atmospheres of pressure). That estimate, in the words of the people who have finally made metallic hydrogen, "was way off." It took until last year for us to reach pressures where the normal form of hydrogen started breaking down into individual atoms—at 380 GigaPascals. Now, a pair of Harvard researchers has upped the pressure quite a bit more, and they have finally made hydrogen into a metal. All of these high-pressure studies rely on what are called diamond anvils. This hardware places small samples between two diamonds, which are hard enough to stand up to extreme pressure. As the diamonds are forced together, the pressure keeps going up. Current calculations suggested that metallic hydrogen might require just a slight boost in pressure from the earlier work, at pressures as low as 400 GigaPascals. But the researchers behind the new work, Ranga Dias and Isaac Silvera, discovered it needed quite a bit more than that. In making that discovery, they also came to a separate realization: normal diamonds weren't up to the task. "Diamond failure," they note, "is the principal limitation for achieving the required pressures to observe SMH," where SMH means "solid metallic hydrogen" rather than "shaking my head." The team came up with some ideas about what might be causing the diamonds to fail and corrected them. One possibility was surface defects, so they etched all diamonds down by five microns to eliminate these. Another problem may be that hydrogen under pressure could be forced into the diamond itself, weakening it. So they cooled the hydrogen to slow diffusion and added material to the anvil that absorbed free hydrogen. Shining lasers through the diamond seemed to trigger failures, so they switched to other sources of light to probe the sample. After loading the sample and cranking up the pressure (literally—they turned a handcrank), they witnessed hydrogen's breakdown at high pressure, which converted it from a clear sample to a black substance, as had been described previously. But then, somewhere between 465 and 495 GigaPascals, the sample turned reflective, a key feature of metals

Submission + - New, higher measurement of universe's expansion made (space.com)

doug141 writes: Astronomers have measured the universe's current expansion rate at about 44.7 miles (71.9 kilometers) per second per megaparsec (3.26 million light-years). This is consistent with a calculation that was announced last year by a research team, but it's considerably higher than the rate that was estimated by the European Space Agency's Planck satellite mission in 2015 — about 41.6 miles (66.9 km) per second per megaparsec. The cause of this discrepancy is unclear.

"The expansion rate of the universe is now starting to be measured in different ways with such high precision that actual discrepancies may possibly point towards new physics beyond our current knowledge of the universe," a researcher said.

Slashdot Top Deals

Do you suffer painful illumination? -- Isaac Newton, "Optics"

Working...