Comment Re:Possible applications? (Score 5) 88
Ok, first the full disclosure. I'm a grad student who worked with both John Canny (the advisor involved) and Dan Resnik (the builder of this cool device). http://www.cs.berkeley.edu/~jfc/
The objections that I'm seeing seem to be of the following:
* "It's not real--the videos are fake."
No, it's real. The basic principle is this: if you take a table and shake it, stuff moves a little. If you shake it in a different direction, stuff moves in a different direction. Dan has figured out a pretty cool way of quantifying all this. He does a vector addition of several different shakes, and is able to therefore target the shaking.
* Why is it cool?
Well, first, because it's not obvious that it works. This is tricky math.
* Yes, but why THIS?
Because robot arms are a pain, and only manipulate one thing at a time, and they need a lot of elbow room, and a lot of motors, and they have to touch things. This requires four motors that JUST pulse in and out. It works on a flat table. Nothing touches except the table surface. This would be perfect for carefully-controlled environments like clean rooms (where you want to minimize the amount of stuff in the room), hazardous materials, and delicate objects. There's very little complexity, and because it's just a bunch of (tuned) vibrations, you could slap up a new one against a floor and it works.
The chess demo is just showing that one can comfortably manipulate a large number of items.
* Does anyone need to sort multiple things?
All the time. Factory floors separate out rejects from working models. Recycling centers separate cans from bottles. Usually, they hire people to sort the stinking messes apart, and they use clever special-built machines to separate metal (use a magnet) from glass (heavier than plastic when crushed) from paper. This sorts on a smooth--therefore easily cleanable--surface.
Dan now works for Siemens TTB, who are, among other things, very interested in small motors.
* My toy did this.
Yes, it did. But it did it in an extremely constrained way, and it probably took a really practiced flip of your wrist. And it probably did it in one dimension. (Dan has a little plastic train set that works on this principle).
* This eliminates human jobs
Not necessarily. It could work well in conjunction with a human job. Why do that annoying RSI-inducing reach/grab/sort when you can sit behind a desk, look at a video camera, and tick off the items on a screen? After all, image recognition isn't too good yet. The machine is responsible for the reach/grab/sort, and you don't have to wear a bunny suit.
The objections that I'm seeing seem to be of the following:
* "It's not real--the videos are fake."
No, it's real. The basic principle is this: if you take a table and shake it, stuff moves a little. If you shake it in a different direction, stuff moves in a different direction. Dan has figured out a pretty cool way of quantifying all this. He does a vector addition of several different shakes, and is able to therefore target the shaking.
* Why is it cool?
Well, first, because it's not obvious that it works. This is tricky math.
* Yes, but why THIS?
Because robot arms are a pain, and only manipulate one thing at a time, and they need a lot of elbow room, and a lot of motors, and they have to touch things. This requires four motors that JUST pulse in and out. It works on a flat table. Nothing touches except the table surface. This would be perfect for carefully-controlled environments like clean rooms (where you want to minimize the amount of stuff in the room), hazardous materials, and delicate objects. There's very little complexity, and because it's just a bunch of (tuned) vibrations, you could slap up a new one against a floor and it works.
The chess demo is just showing that one can comfortably manipulate a large number of items.
* Does anyone need to sort multiple things?
All the time. Factory floors separate out rejects from working models. Recycling centers separate cans from bottles. Usually, they hire people to sort the stinking messes apart, and they use clever special-built machines to separate metal (use a magnet) from glass (heavier than plastic when crushed) from paper. This sorts on a smooth--therefore easily cleanable--surface.
Dan now works for Siemens TTB, who are, among other things, very interested in small motors.
* My toy did this.
Yes, it did. But it did it in an extremely constrained way, and it probably took a really practiced flip of your wrist. And it probably did it in one dimension. (Dan has a little plastic train set that works on this principle).
* This eliminates human jobs
Not necessarily. It could work well in conjunction with a human job. Why do that annoying RSI-inducing reach/grab/sort when you can sit behind a desk, look at a video camera, and tick off the items on a screen? After all, image recognition isn't too good yet. The machine is responsible for the reach/grab/sort, and you don't have to wear a bunny suit.