
Not much more information than in the article, but here's the abstract. This is pretty similar to Bragg scattering, which is a well known effect that uses sound waves to upshift the frequency of light. Current Bragg cells are very inefficient and are limited to small shifts in frequency. A high efficiency Bragg cell capable of shifting frequency by a large amount would be extremely interesting.
Color of shock waves in photonic crystals
Evan J. Reed, Marin Soljacic, and John D. Joannopoulos
Unexpected and stunning new physical phenomena result when light interacts with a shock wave or shock-like dielectric modulation propagating through a photonic crystal. These new phenomena include the capture of light at the shock wave front and re-emission at a tunable pulse rate and carrier frequency across the bandgap, and bandwidth narrowing as opposed to the ubiquitous bandwidth broadening. To our knowledge, these effects do not occur in any other physical system and are all realizable under experimentally accessible conditions. Furthermore, their generality make them amenable to observation in a variety of time-dependent photonic crystal systems, which has significant technological implications.
The newest entry at drflounder.com is up. The topic is "Fusion energy clears another hurdle."
The next person to mention spaghetti stacks to me is going to have his head knocked off. -- Bill Conrad