Slashdot is powered by your submissions, so send in your scoop


Forgot your password?
DEAL: For $25 - Add A Second Phone Number To Your Smartphone for life! Use promo code SLASHDOT25. Also, Slashdot's Facebook page has a chat bot now. Message it for stories and more. Check out the new SourceForge HTML5 internet speed test! ×

Submission + - Book Review: Beginning Python Visualization (

aceydacey writes: "Sometimes a picture is worth a thousand words. "Beginning Python Visualization: Creating Visual Transformation Scripts", published in February 2009 by Apress, shows how Python and its related tools can be used to easily and effectively turn raw data into visual representations that communicate effectively. The author is Shai Vaingast, a professional engineer and engineering manager who needed to train scientists and engineers to do this kind of programming work. He was looking for a tutorial and reference work, and unable to find a suitable text, wound up writing his first book. He wrote in the easy and clear style of someone comfortable and engaged with the subject matter.

The book uses several very specific examples that illustrate general principles.

The first example is using GPS data. By using Python one can extract data from GPS receivers and enter it into the computer and manipulate it to do what one wants including creating graphs and charts. In this section he shows how to use CSV, comma separated values, as a most useful file format. He shows show to extract data from real world GPS devices and import it via serial ports and the PySerial module. It would be easy for the reader to duplicate and extend this project.

The heart of the book is coverage of useful examples utilizing MatPlotLib, NumPy and SciPy. These related tools are easy to use and fully integrated with Python. MatPlotLib is for plotting data and graphs, including interactive graphs and image files. NumPy is a powerful math library comparable to commercial tools like MatLab, and SciPy extends NumPy to for the sciences. Examples are numerous and include signal analysis using Fourier transforms.

There is also a section on Image Processing using PIL, the Python Imaging Library. This is used for relatively simple image cropping and sizing and also for bit by bit image processing. Interpolation and curve fitting are also well covered. For anyone wanting an introduction to graphical analysis of statistical data, this would be an excellent resource.

The author is obviously a professional in this field. He has a knack for good organizational style and a pragmatic approach to the work. In the book he says "Most of the time, research is organized chaos. The emphasis, however, should be on organized, not chaos." A real value I got from the book is a better understanding of data files, format, and organization as well as methods and guidelines for selecting file formats and storing and organizing data to enable fast and efficient data processing. It is obvious that this book was written by a practicing engineer.

The theme of the book is that Python can be an all purpose environment for data manipulation and visualization, using nothing but free and open source tools that are easily integrated and scriptable without using multiple programming languages. The book should be an invaluable tool for scientists and engineers but it is also easily accessible to anyone interested in math and data analysis. There is no need for an advanced math background. While, as a matter of full disclosure, I have undergraduate degrees in Math and Physics, I feel the book should be easily accessible to anyone with a solid high school math background who is seriously interested in the subject. The book contains a short introductory tutorial on the basics of Python so anyone familiar with programming in any language should be fine.

The book is an easy read from front to back, and I am sure it will also be a good reference resource for the future. The writing style is very clear and unforced and I found surprisingly few errors. While the Python world has a surplus of introductory and general books, books covering this kind of specific domain are especially welcome, and we could use more on other topics by competent authors.

At 363 pages the book is a surprisingly fast read. Its methodology is to use specific, short code examples to make all the key points. Most of the code samples are well selected, short and written in clear, concise Python. This is not the kind of book that overwhelms you with massive amounts of code. Either the book was well edited or else it was written by an exceptionally lucid thinker, or both.

So, if you want to learn how to process, organize, and visualize data from various sources using the Python language, I recommend this book to you. I have also posted a podcast of an interview with the author at Python411"

This discussion was created for logged-in users only, but now has been archived. No new comments can be posted.

Book Review: Beginning Python Visualization

Comments Filter: