Best Spring Cloud Data Flow Alternatives in 2025

Find the top alternatives to Spring Cloud Data Flow currently available. Compare ratings, reviews, pricing, and features of Spring Cloud Data Flow alternatives in 2025. Slashdot lists the best Spring Cloud Data Flow alternatives on the market that offer competing products that are similar to Spring Cloud Data Flow. Sort through Spring Cloud Data Flow alternatives below to make the best choice for your needs

  • 1
    Upsolver Reviews
    Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries.
  • 2
    Striim Reviews
    Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data.
  • 3
    Pandio Reviews

    Pandio

    Pandio

    $1.40 per hour
    It is difficult, costly, and risky to connect systems to scale AI projects. Pandio's cloud native managed solution simplifies data pipelines to harness AI's power. You can access your data from any location at any time to query, analyze, or drive to insight. Big data analytics without the high cost Enable data movement seamlessly. Streaming, queuing, and pub-sub with unparalleled throughput, latency and durability. In less than 30 minutes, you can design, train, deploy, and test machine learning models locally. Accelerate your journey to ML and democratize it across your organization. It doesn't take months or years of disappointment. Pandio's AI driven architecture automatically orchestrates all your models, data and ML tools. Pandio can be integrated with your existing stack to help you accelerate your ML efforts. Orchestrate your messages and models across your organization.
  • 4
    Google Cloud Dataflow Reviews
    Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns.
  • 5
    Azure Event Hubs Reviews
    Event Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency.
  • 6
    Leo Reviews

    Leo

    Leo

    $251 per month
    Transform your data into a real-time stream, ensuring it is instantly accessible and ready for utilization. Leo simplifies the complexities of event sourcing, allowing you to effortlessly create, visualize, monitor, and sustain your data streams. By unlocking your data, you free yourself from the limitations imposed by outdated systems. The significant reduction in development time leads to higher satisfaction among both developers and stakeholders alike. Embrace microservice architectures to foster continuous innovation and enhance your agility. Ultimately, achieving success with microservices hinges on effective data management. Organizations need to build a dependable and repeatable data backbone to turn microservices into a tangible reality. You can also integrate comprehensive search functionality into your custom application, as the continuous flow of data makes managing and updating a search database a seamless task. With these advancements, your organization will be well-positioned to leverage data more effectively than ever before.
  • 7
    JHipster Reviews
    JHipster serves as a comprehensive development platform designed for the rapid creation, development, and deployment of contemporary web applications and microservice architectures. It accommodates a variety of frontend technologies, such as Angular, React, and Vue, and also extends support to mobile applications using Ionic and React Native. On the backend, JHipster offers compatibility with Spring Boot (utilizing either Java or Kotlin), Micronaut, Quarkus, Node.js, and .NET frameworks. When it comes to deployment, the platform adheres to cloud-native principles via Docker and Kubernetes, providing deployment options for various environments including AWS, Azure, Cloud Foundry, Google Cloud Platform, Heroku, and OpenShift. The primary objective is to produce a comprehensive and modern web application or microservice architecture equipped with a high-performance and resilient server-side stack, showcasing excellent test coverage. The user interface is designed to be sleek, modern, and mobile-first, utilizing Angular, React, or Vue along with Bootstrap for styling. Moreover, the platform incorporates a powerful workflow for application building through tools like Webpack and Maven or Gradle, ensuring a resilient microservice architecture that remains focused on cloud-native methodologies. This holistic approach ensures that developers have all the resources they need to create scalable and efficient applications.
  • 8
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 9
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 10
    IBM StreamSets Reviews
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 11
    Pathway Reviews
    Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models
  • 12
    Hazelcast Reviews
    In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing.
  • 13
    Crosser Reviews
    Analyze and utilize your data at the Edge to transform Big Data into manageable, pertinent insights. Gather sensor information from all your equipment and establish connections with various devices like sensors, PLCs, DCS, MES, or historians. Implement condition monitoring for assets located remotely, aligning with Industry 4.0 standards for effective data collection and integration. Merge real-time streaming data with enterprise data for seamless data flows, and utilize your preferred Cloud Provider or your own data center for data storage solutions. Leverage Crosser Edge's MLOps capabilities to bring, manage, and deploy your custom machine learning models, with the Crosser Edge Node supporting any machine learning framework. Access a centralized library for your trained models hosted in Crosser Cloud, and streamline your data pipeline using a user-friendly drag-and-drop interface. Easily deploy machine learning models to multiple Edge Nodes with a single operation, fostering self-service innovation through Crosser Flow Studio. Take advantage of an extensive library of pre-built modules to facilitate collaboration among teams across different locations, effectively reducing reliance on individual team members and enhancing organizational efficiency. With these capabilities, your workflow will promote collaboration and innovation like never before.
  • 14
    Spring Framework Reviews
    Spring revolutionizes Java programming, making it faster, simpler, and more secure for developers of all skill levels. Its emphasis on efficiency and productivity has propelled it to become the leading Java framework globally. Developers across the globe rely on Spring’s adaptable libraries. Each day, Spring enhances the user experience for countless individuals, powering everything from online shopping to streaming services and numerous other creative applications. With an extensive array of extensions and third-party libraries, it empowers developers to create virtually any type of application they envision. At its heart, the Inversion of Control (IoC) and Dependency Injection (DI) principles of the Spring Framework lay the groundwork for a diverse range of features and capabilities. No matter if you're developing cloud-based microservices that are secure and reactive or intricate data streaming solutions for large enterprises, Spring equips you with the necessary tools to succeed. Thus, Spring stands out as a versatile solution for modern software development challenges.
  • 15
    Astra Streaming Reviews
    Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments.
  • 16
    DeltaStream Reviews
    DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored.
  • 17
    Conduktor Reviews
    We developed Conduktor, a comprehensive and user-friendly interface designed to engage with the Apache Kafka ecosystem seamlessly. Manage and develop Apache Kafka with assurance using Conduktor DevTools, your all-in-one desktop client tailored for Apache Kafka, which helps streamline workflows for your entire team. Learning and utilizing Apache Kafka can be quite challenging, but as enthusiasts of Kafka, we have crafted Conduktor to deliver an exceptional user experience that resonates with developers. Beyond merely providing an interface, Conduktor empowers you and your teams to take command of your entire data pipeline through our integrations with various technologies associated with Apache Kafka. With Conduktor, you gain access to the most complete toolkit available for working with Apache Kafka, ensuring that your data management processes are efficient and effective. This means you can focus more on innovation while we handle the complexities of your data workflows.
  • 18
    RudderStack Reviews
    RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today.
  • 19
    Talend Pipeline Designer Reviews
    Talend Pipeline Designer is an intuitive web-based application designed for users to transform raw data into a format suitable for analytics. It allows for the creation of reusable pipelines that can extract, enhance, and modify data from various sources before sending it to selected data warehouses, which can then be used to generate insightful dashboards for your organization. With this tool, you can efficiently build and implement data pipelines in a short amount of time. The user-friendly visual interface enables both design and preview capabilities for batch or streaming processes directly within your web browser. Its architecture is built to scale, supporting the latest advancements in hybrid and multi-cloud environments, while enhancing productivity through real-time development and debugging features. The live preview functionality provides immediate visual feedback, allowing you to diagnose data issues swiftly. Furthermore, you can accelerate decision-making through comprehensive dataset documentation, quality assurance measures, and effective promotion strategies. The platform also includes built-in functions to enhance data quality and streamline the transformation process, making data management an effortless and automated practice. In this way, Talend Pipeline Designer empowers organizations to maintain high data integrity with ease.
  • 20
    Quickplay Reviews
    Quickplay’s over-the-top (OTT) solution leverages advanced cloud-native technologies such as containers, microservices, a service mesh, APIs, and immutable infrastructure. This technological framework ensures enhanced performance, supports a modular approach for feature enhancements, allows for continuous delivery to facilitate swift iterations, and incorporates essential attributes like scalability, observability, and security. Our comprehensive streaming platform utilizes a forward-thinking technology stack that is crafted to provide personalized viewer experiences and foster engagement through actionable data insights. The Video Content Management System (CMS) we offer is designed to ensure digital distribution remains resilient and responsive, effectively addressing the challenges of high concurrency and low latency while also optimizing cloud infrastructure expenditures. Our video pipeline is tailored for delivering superior quality and low-latency streaming at a significant scale. With extensive experience in managing thousands of linear and virtual channels, live events, and video-on-demand services, we are equipped to create customized workflows that cater specifically to the unique needs of our customers. Additionally, our commitment to innovation ensures that we remain at the forefront of the evolving OTT landscape.
  • 21
    Aiven for Apache Kafka Reviews
    Experience Apache Kafka offered as a fully managed service that avoids vendor lock-in while providing comprehensive features for constructing your streaming pipeline. You can establish a fully managed Kafka instance in under 10 minutes using our intuitive web console or programmatically through our API, CLI, Terraform provider, or Kubernetes operator. Seamlessly integrate it with your current technology infrastructure using more than 30 available connectors, and rest assured with comprehensive logs and metrics that come standard through our service integrations. This fully managed distributed data streaming platform can be deployed in any cloud environment of your choice. It’s perfectly suited for applications that rely on event-driven architectures, facilitating near-real-time data transfers and pipelines, stream analytics, and any situation where swift data movement between applications is essential. With Aiven’s hosted and expertly managed Apache Kafka, you can effortlessly set up clusters, add new nodes, transition between cloud environments, and update existing versions with just a single click, all while keeping an eye on performance through a user-friendly dashboard. Additionally, this service enables businesses to scale their data solutions efficiently as their needs evolve.
  • 22
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 23
    BigBI Reviews
    BigBI empowers data professionals to create robust big data pipelines in an interactive and efficient manner, all without requiring any programming skills. By harnessing the capabilities of Apache Spark, BigBI offers remarkable benefits such as scalable processing of extensive datasets, achieving speeds that can be up to 100 times faster. Moreover, it facilitates the seamless integration of conventional data sources like SQL and batch files with contemporary data types, which encompass semi-structured formats like JSON, NoSQL databases, Elastic, and Hadoop, as well as unstructured data including text, audio, and video. Additionally, BigBI supports the amalgamation of streaming data, cloud-based information, artificial intelligence/machine learning, and graphical data, making it a comprehensive tool for data management. This versatility allows organizations to leverage diverse data types and sources, enhancing their analytical capabilities significantly.
  • 24
    Akka Reviews
    Akka serves as a powerful toolkit designed for creating highly concurrent, distributed, and resilient applications driven by messages, specifically tailored for Java and Scala. Complementing this is Akka Insights, a sophisticated monitoring and observability solution specifically engineered for Akka environments. With the use of Actors and Streams, developers can create systems that efficiently utilize server resources and expand across multiple servers. Grounded in the tenets of The Reactive Manifesto, Akka empowers the development of systems capable of self-repairing and maintaining responsiveness despite encountering failures. It facilitates the creation of distributed systems free from single points of failure, incorporates load balancing and adaptive routing among nodes, and supports Event Sourcing and CQRS in conjunction with Cluster Sharding. Furthermore, it enables Distributed Data to ensure eventual consistency through CRDTs, while also providing asynchronous, non-blocking stream processing equipped with backpressure mechanisms. Its fully asynchronous and streaming HTTP server and client capabilities make it an excellent foundation for microservice architecture, and the integration with Alpakka enhances its streaming capabilities for various applications. As a result, Akka stands out as a comprehensive solution for modern application development.
  • 25
    Lenses Reviews

    Lenses

    Lenses.io

    $49 per month
    Empower individuals to explore and analyze streaming data effectively. By sharing, documenting, and organizing your data, you can boost productivity by as much as 95%. Once you have your data, you can create applications tailored for real-world use cases. Implement a security model focused on data to address the vulnerabilities associated with open source technologies, ensuring data privacy is prioritized. Additionally, offer secure and low-code data pipeline functionalities that enhance usability. Illuminate all hidden aspects and provide unmatched visibility into data and applications. Integrate your data mesh and technological assets, ensuring you can confidently utilize open-source solutions in production environments. Lenses has been recognized as the premier product for real-time stream analytics, based on independent third-party evaluations. With insights gathered from our community and countless hours of engineering, we have developed features that allow you to concentrate on what generates value from your real-time data. Moreover, you can deploy and operate SQL-based real-time applications seamlessly over any Kafka Connect or Kubernetes infrastructure, including AWS EKS, making it easier than ever to harness the power of your data. By doing so, you will not only streamline operations but also unlock new opportunities for innovation.
  • 26
    Conductor Reviews
    Conductor serves as a cloud-based workflow orchestration engine designed to assist Netflix in managing process flows that rely on microservices. It boasts a number of key features, including an efficient distributed server ecosystem that maintains workflow state information. Users can create business processes where individual tasks may be handled by either the same or different microservices. The system utilizes a Directed Acyclic Graph (DAG) for workflow definitions, ensuring that these definitions remain separate from the actual service implementations. It also offers enhanced visibility and traceability for the various process flows involved. A user-friendly interface facilitates the connection of workers responsible for executing tasks within these workflows. Notably, workers are language-agnostic, meaning each microservice can be developed in the programming language best suited for its purposes. Conductor grants users total operational control over workflows, allowing them to pause, resume, restart, retry, or terminate processes as needed. Ultimately, it promotes the reuse of existing microservices, making the onboarding process significantly more straightforward and efficient for developers.
  • 27
    Cloudera DataFlow Reviews
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management.
  • 28
    InfinyOn Cloud Reviews
    InfinyOn has developed a cutting-edge platform for continuous intelligence that operates on data as it flows. Different from conventional event streaming platforms that utilize Java, Infinyon Cloud leverages Rust to provide exceptional scalability and security for applications requiring real-time processing. The platform offers readily available programmable connectors that manipulate data events instantaneously. Users can establish intelligent analytics pipelines to enhance, secure, and correlate events in real-time. Furthermore, these programmable connectors facilitate the dispatch of events and keep relevant stakeholders informed. Each connector functions either as a source to bring in data or as a sink to send out data. These connectors can be implemented in two primary configurations: as a Managed Connector, where the Fluvio cluster handles provisioning and management, or as a Local Connector, which requires users to launch the connector manually as a Docker container in their preferred environment. Moreover, connectors are organized into four distinct stages, each with specific roles and responsibilities that contribute to the overall efficiency of data handling. This multi-stage approach enhances the adaptability and effectiveness of the platform in addressing diverse data needs.
  • 29
    Flowcore Reviews
    The Flowcore platform offers a comprehensive solution for event streaming and event sourcing, all within a single, user-friendly service. It provides a seamless data flow and reliable replayable storage, specifically tailored for developers working at data-centric startups and enterprises striving for continuous innovation and growth. Your data operations are securely preserved, ensuring that no important information is ever compromised. With the ability to instantly transform and reclassify your data, it can be smoothly directed to any necessary destination. Say goodbye to restrictive data frameworks; Flowcore's flexible architecture evolves alongside your business, effortlessly managing increasing data volumes. By optimizing and simplifying backend data tasks, your engineering teams can concentrate on their core strengths—developing groundbreaking products. Moreover, the platform enables more effective integration of AI technologies, enhancing your offerings with intelligent, data-informed solutions. While Flowcore is designed with developers in mind, its advantages reach far beyond just the technical team, benefiting the entire organization in achieving its strategic goals. With Flowcore, you can truly elevate your data strategy to new heights.
  • 30
    DataStax Reviews
    Introducing a versatile, open-source multi-cloud platform for contemporary data applications, built on Apache Cassandra™. Achieve global-scale performance with guaranteed 100% uptime while avoiding vendor lock-in. You have the flexibility to deploy on multi-cloud environments, on-premises infrastructures, or use Kubernetes. The platform is designed to be elastic and offers a pay-as-you-go pricing model to enhance total cost of ownership. Accelerate your development process with Stargate APIs, which support NoSQL, real-time interactions, reactive programming, as well as JSON, REST, and GraphQL formats. Bypass the difficulties associated with managing numerous open-source projects and APIs that lack scalability. This solution is perfect for various sectors including e-commerce, mobile applications, AI/ML, IoT, microservices, social networking, gaming, and other highly interactive applications that require dynamic scaling based on demand. Start your journey of creating modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Leverage REST, GraphQL, and JSON alongside your preferred full-stack framework. This platform ensures that your richly interactive applications are not only elastic but also ready to gain traction from the very first day, all while offering a cost-effective Apache Cassandra DBaaS that scales seamlessly and affordably as your needs evolve. With this innovative approach, developers can focus on building rather than managing infrastructure.
  • 31
    CloverDX Reviews
    In a developer-friendly visual editor, you can design, debug, run, and troubleshoot data jobflows and data transformations. You can orchestrate data tasks that require a specific sequence and organize multiple systems using the transparency of visual workflows. Easy deployment of data workloads into an enterprise runtime environment. Cloud or on-premise. Data can be made available to applications, people, and storage through a single platform. You can manage all your data workloads and related processes from one platform. No task is too difficult. CloverDX was built on years of experience in large enterprise projects. Open architecture that is user-friendly and flexible allows you to package and hide complexity for developers. You can manage the entire lifecycle for a data pipeline, from design, deployment, evolution, and testing. Our in-house customer success teams will help you get things done quickly.
  • 32
    Hevo Reviews
    Hevo Data is a no-code, bi-directional data pipeline platform specially built for modern ETL, ELT, and Reverse ETL Needs. It helps data teams streamline and automate org-wide data flows that result in a saving of ~10 hours of engineering time/week and 10x faster reporting, analytics, and decision making. The platform supports 100+ ready-to-use integrations across Databases, SaaS Applications, Cloud Storage, SDKs, and Streaming Services. Over 500 data-driven companies spread across 35+ countries trust Hevo for their data integration needs.
  • 33
    Informatica Data Engineering Streaming Reviews
    Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before.
  • 34
    Red Hat OpenShift Streams Reviews
    Red Hat® OpenShift® Streams for Apache Kafka is a cloud-managed service designed to enhance the developer experience for creating, deploying, and scaling cloud-native applications, as well as for modernizing legacy systems. This service simplifies the processes of creating, discovering, and connecting to real-time data streams, regardless of their deployment location. Streams play a crucial role in the development of event-driven applications and data analytics solutions. By enabling seamless operations across distributed microservices and handling large data transfer volumes with ease, it allows teams to leverage their strengths, accelerate their time to value, and reduce operational expenses. Additionally, OpenShift Streams for Apache Kafka features a robust Kafka ecosystem and is part of a broader suite of cloud services within the Red Hat OpenShift product family, empowering users to develop a diverse array of data-driven applications. With its powerful capabilities, this service ultimately supports organizations in navigating the complexities of modern software development.
  • 35
    Spark Streaming Reviews

    Spark Streaming

    Apache Software Foundation

    Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
  • 36
    StreamNative Reviews

    StreamNative

    StreamNative

    $1,000 per month
    StreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming.
  • 37
    Lightbend Reviews
    Lightbend offers innovative technology that empowers developers to create applications centered around data, facilitating the development of demanding, globally distributed systems and streaming data pipelines. Businesses across the globe rely on Lightbend to address the complexities associated with real-time, distributed data, which is essential for their most critical business endeavors. The Akka Platform provides essential components that simplify the process for organizations to construct, deploy, and manage large-scale applications that drive digital transformation. By leveraging reactive microservices, companies can significantly speed up their time-to-value while minimizing expenses related to infrastructure and cloud services, all while ensuring resilience against failures and maintaining efficiency at any scale. With built-in features for encryption, data shredding, TLS enforcement, and adherence to GDPR standards, it ensures secure data handling. Additionally, the framework supports rapid development, deployment, and oversight of streaming data pipelines, making it a comprehensive solution for modern data challenges. This versatility positions companies to fully harness the potential of their data, ultimately propelling them forward in an increasingly competitive landscape.
  • 38
    Oracle Cloud Infrastructure Streaming Reviews
    The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
  • 39
    Amazon MSK Reviews

    Amazon MSK

    Amazon

    $0.0543 per hour
    Amazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure.
  • 40
    Tencent Cloud Elastic Microservice Reviews
    TEM actively supports the Spring Cloud open source community and functions as a robust, scalable, and adaptable commercial platform for microservice technology based on components. This platform facilitates a seamless transition of Spring Cloud applications to an elastic microservice architecture without necessitating changes to the code, thereby significantly cutting down on both migration duration and operational expenses. TEM provides comprehensive application hosting services that oversee the complete lifecycle of cloud-native microservice applications. By leveraging TEM, users can easily create, deploy, scale, halt, deactivate, and monitor applications efficiently and securely, all while avoiding the complexities of underlying infrastructure management. Furthermore, TEM allows businesses to transition to the cloud effortlessly and swiftly, maintaining the integrity of their original code, which minimizes the learning curve, drastically lowers operational costs, and enhances overall business performance. In this way, TEM positions itself as a valuable ally for organizations looking to innovate and streamline their cloud operations.
  • 41
    Automic Automation Reviews
    To thrive in today's competitive digital landscape, enterprises must automate a wide array of applications, platforms, and technologies to effectively deliver services. Service Orchestration and Automation Platforms play a crucial role in scaling IT operations and maximizing the benefits of automation; they enable the management of intricate workflows that span various platforms, including ERP systems and business applications, from mainframes to microservices across multi-cloud environments. Additionally, it is vital to optimize big data pipelines, allowing data scientists to utilize self-service options while ensuring extensive scalability and robust governance over data flows. Organizations must also deliver compute, networking, and storage resources both on-premises and in the cloud to support development and business users. Automic Automation offers the agility, speed, and reliability necessary for successful digital business automation, providing a unified platform that centralizes orchestration and automation functions to facilitate and expedite digital transformation efforts effectively. With these capabilities, businesses can seamlessly adapt to changing demands while maintaining operational efficiency.
  • 42
    Apprenda Reviews
    The Apprenda Cloud Platform (ACP) equips enterprise IT with the ability to establish a Kubernetes-enabled shared service across various infrastructures, making it accessible for developers throughout different business units. This platform is designed to support the entirety of your custom application portfolio. It facilitates the swift creation, deployment, operation, and management of cloud-native, microservices, and container-based .NET and Java applications, while also allowing for the modernization of legacy workloads. ACP empowers developers with self-service access to essential tools for quick application development, all while providing IT operators with an effortless way to orchestrate environments and workflows. As a result, enterprise IT transitions into a genuine service provider role. ACP serves as a unified platform that integrates seamlessly across multiple data centers and cloud environments. Whether deployed on-premise or utilized as a managed service in the public cloud, it guarantees complete independence of infrastructure. Additionally, ACP offers policy-driven governance over the infrastructure usage and DevOps processes related to all application workloads, ensuring efficiency and compliance. This level of control not only maximizes resource utilization but also enhances collaboration between development and operations teams.
  • 43
    Informatica Data Engineering Reviews
    Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence.
  • 44
    Styra Reviews
    The quickest and simplest method to implement Open Policy Agent (OPA) within Kubernetes, Microservices, or Custom APIs caters to both developers and administrators alike. Are you looking to restrict pipeline access based on on-call personnel? It's straightforward. Do you need to regulate which microservices can interact with PCI data? We've got it covered. Is proving compliance with regulatory standards across your clusters a priority? No problem at all. Styra Declarative Authorization Service is built on open-source foundations and is designed to be declarative, providing you with an efficient OPA control plane to help reduce risks, minimize human errors, and speed up development processes. With an integrated library of policies derived from our OPA project, you can easily implement and tailor authorization policies as code. The pre-running functionality allows you to oversee and validate policy modifications prior to implementation, effectively lowering risks before deployment. Furthermore, the declarative model establishes the desired state to prevent security drift and eliminate potential errors before they arise, ensuring a more secure and reliable operational environment. This comprehensive approach empowers organizations to maintain strict security protocols while streamlining their workflows.
  • 45
    Confluent Reviews
    Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented.