Best Data Engineering Tools for Snowflake

Find and compare the best Data Engineering tools for Snowflake in 2025

Use the comparison tool below to compare the top Data Engineering tools for Snowflake on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DataBuck Reviews
    See Tool
    Learn More
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 2
    Composable DataOps Platform Reviews

    Composable DataOps Platform

    Composable Analytics

    $8/hr - pay-as-you-go
    4 Ratings
    Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
  • 3
    Peekdata Reviews

    Peekdata

    Peekdata

    $349 per month
    2 Ratings
    It takes only days to wrap any data source with a single reference Data API and simplify access to reporting and analytics data across your teams. Make it easy for application developers and data engineers to access the data from any source in a streamlined manner. - The single schema-less Data API endpoint - Review, configure metrics and dimensions in one place via UI - Data model visualization to make faster decisions - Data Export management scheduling API Our proxy perfectly fits into your current API management ecosystem (versioning, data access, discovery) no matter if you are using Mulesoft, Apigee, Tyk, or your homegrown solution. Leverage the capabilities of Data API and enrich your products with self-service analytics for dashboards, data Exports, or custom report composer for ad-hoc metric querying. Ready-to-use Report Builder and JavaScript components for popular charting libraries (Highcharts, BizCharts, Chart.js, etc.) makes it easy to embed data-rich functionality into your products. Your product or service users will love that because everybody likes to make data-driven decisions! And you will not have to make custom report queries anymore!
  • 4
    Domo Reviews
    Top Pick
    Domo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results.
  • 5
    RudderStack Reviews

    RudderStack

    RudderStack

    $750/month
    RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today.
  • 6
    Pecan Reviews

    Pecan

    Pecan AI

    $950 per month
    Founded in 2018, Pecan is a predictive analytics platform that leverages its pioneering Predictive GenAI to remove barriers to AI adoption, making predictive modeling accessible to all data and business teams. Guided by generative AI, companies can obtain precise predictions across various business domains without the need for specialized personnel. Predictive GenAI enables rapid model definition and training, while automated processes accelerate AI implementation. With Pecan's fusion of predictive and generative AI, realizing the business impact of AI is now far faster and easier.
  • 7
    Microsoft Fabric Reviews

    Microsoft Fabric

    Microsoft

    $156.334/month/2CU
    Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance.
  • 8
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 9
    Qrvey Reviews
    Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value.
  • 10
    Dataplane Reviews

    Dataplane

    Dataplane

    Free
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 11
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 12
    Decube Reviews
    Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements.
  • 13
    Latitude Reviews
    Answer questions today, not next week. Latitude makes it easy to create low-code data apps within minutes. You don't need a data stack, but you can help your team answer data-related questions. Connect your data sources to Latitude and you can immediately start exploring your data. Latitude connects with your database, data warehouse, or other tools used by your team. Multiple sources can be used in the same analysis. We support over 100 data sources. Latitude offers a vast array of data sources that can be used by teams to explore and transform data. This includes using our AI SQL Assistant, visual programming, and manually writing SQL queries. Latitude combines data exploration with visualization. You can choose from tables or charts and add them to the canvas you are currently working on. Interactive views are easy to create because your canvas already knows how variables and transformations work together.
  • 14
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a unified platform that allows them to ingest and transform their data and create and manage their analytics engineering and data engineering workloads. Ascend is supported by DataAware intelligence. Ascend works in the background to ensure data integrity and optimize data workloads, which can reduce maintenance time by up to 90%. Ascend's multilingual flex-code interface allows you to use SQL, Java, Scala, and Python interchangeably. Quickly view data lineage and data profiles, job logs, system health, system health, and other important workload metrics at a glance. Ascend provides native connections to a growing number of data sources using our Flex-Code data connectors.
  • 15
    Numbers Station Reviews
    Data analysts can now gain insights faster and without any barriers. Intelligent data stack automation, gain insights from your data 10x quicker with AI. Intelligence for the modern data-stack has arrived, a technology that was developed at Stanford's AI lab and is now available to enterprises. Use natural language to extract value from your messy data, complex and siloed in minutes. Tell your data what you want and it will generate code to execute. Automate complex data tasks in a way that is specific to your company and not covered by templated solutions. Automate data-intensive workflows using the modern data stack. Discover insights in minutes and not months. Uniquely designed and tuned to your organization's requirements. Snowflake, Databricks Redshift, BigQuery and more are integrated with dbt.
  • 16
    DataLakeHouse.io Reviews

    DataLakeHouse.io

    DataLakeHouse.io

    $99
    DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions.
  • 17
    Chalk Reviews

    Chalk

    Chalk

    Free
    Data engineering workflows that are powerful, but without the headaches of infrastructure. Simple, reusable Python is used to define complex streaming, scheduling and data backfill pipelines. Fetch all your data in real time, no matter how complicated. Deep learning and LLMs can be used to make decisions along with structured business data. Don't pay vendors for data that you won't use. Instead, query data right before online predictions. Experiment with Jupyter and then deploy into production. Create new data workflows and prevent train-serve skew in milliseconds. Instantly monitor your data workflows and track usage and data quality. You can see everything you have computed, and the data will replay any information. Integrate with your existing tools and deploy it to your own infrastructure. Custom hold times and withdrawal limits can be set.
  • 18
    Fivetran Reviews
    Fivetran is the smartest method to replicate data into your warehouse. Our zero-maintenance pipeline is the only one that allows for a quick setup. It takes months of development to create this system. Our connectors connect data from multiple databases and applications to one central location, allowing analysts to gain profound insights into their business.
  • 19
    Datakin Reviews

    Datakin

    Datakin

    $2 per month
    You can instantly see the order in your complex data world and know exactly where to find answers. Datakin automatically tracks data lineage and displays your entire data ecosystem as a rich visual graph. It clearly shows the upstream and downstream relationships of each dataset. The Duration tab summarizes the job's performance and its upstream dependencies in a Gantt-style graph. This makes it easy to identify bottlenecks. The Compare tab allows you to see how your jobs and data have changed over time. Sometimes jobs that run well can produce poor output. The Quality tab shows you the most important data quality metrics and how they change over time. This makes anomalies easily visible. Datakin allows you to quickly identify the root cause of problems and prevent them from happening again.
  • 20
    Feast Reviews
    Your offline data can be used to make real-time predictions, without the need for custom pipelines. Data consistency is achieved between offline training and online prediction, eliminating train-serve bias. Standardize data engineering workflows within a consistent framework. Feast is used by teams to build their internal ML platforms. Feast doesn't require dedicated infrastructure to be deployed and managed. Feast reuses existing infrastructure and creates new resources as needed. You don't want a managed solution, and you are happy to manage your own implementation. Feast is supported by engineers who can help with its implementation and management. You are looking to build pipelines that convert raw data into features and integrate with another system. You have specific requirements and want to use an open-source solution.
  • 21
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 22
    IBM Databand Reviews
    Monitor your data health, and monitor your pipeline performance. Get unified visibility for all pipelines that use cloud-native tools such as Apache Spark, Snowflake and BigQuery. A platform for Data Engineers that provides observability. Data engineering is becoming more complex as business stakeholders demand it. Databand can help you catch-up. More pipelines, more complexity. Data engineers are working with more complex infrastructure and pushing for faster release speeds. It is more difficult to understand why a process failed, why it is running late, and how changes impact the quality of data outputs. Data consumers are frustrated by inconsistent results, model performance, delays in data delivery, and other issues. A lack of transparency and trust in data delivery can lead to confusion about the exact source of the data. Pipeline logs, data quality metrics, and errors are all captured and stored in separate, isolated systems.
  • 23
    Molecula Reviews
    Molecula, an enterprise feature store, simplifies, speeds up, and controls big-data access to power machine scale analytics and AI. Continuously extracting features and reducing the data dimensionality at the source allows for millisecond queries, computations, and feature re-use across formats without copying or moving any raw data. The Molecula feature storage provides data engineers, data scientists and application developers with a single point of access to help them move from reporting and explaining with human scale data to predicting and prescribing business outcomes. Enterprises spend a lot of time preparing, aggregating and making multiple copies of their data before they can make any decisions with it. Molecula offers a new paradigm for continuous, real time data analysis that can be used for all mission-critical applications.
  • 24
    Foghub Reviews
    Simplified IT/OT Integration, Data Engineering & Real-Time Edge Intelligence. Easy to use, cross platform, open architecture edge computing for industrial time series data. Foghub provides the Critical-Path for IT/OT convergence. It connects Operations (Sensors and Devices, and Systems) and Business (People, Processes and Applications). This allows automated data acquisition, transformations, advanced analytics, and ML. You can manage large volumes, velocity, and variety of industrial data with the out-of-the box support for all data types, most industrial network protocols, OT/lab system, and databases. Automate data collection about your production runs, batches and parts, as well as process parameters, asset condition, performance, utility costs, consumables, operators and their performance. Foghub is designed for scale and offers a wide range of capabilities to handle large volumes of data at high velocity.
  • 25
    Switchboard Reviews
    Switchboard, a data engineering automation platform that is driven by business teams, allows you to aggregate disparate data at scale and make better business decisions. Get timely insights and precise forecasts. No more outdated manual reports or poorly designed pivot tables that don’t scale. Directly pull data from the right formats and reconfigure them in a non-code environment. Reduce dependency on engineering teams. API outages, bad schemas and missing data are gone thanks to automatic monitoring and backfilling. It's not a dumb API. Instead, it's an ecosystem of pre-built connectors which can be quickly and easily adapted to transform raw data into strategic assets. Our team of experts have worked in data teams at Google, Facebook, and other companies. These best practices have been automated to improve your data game. Data engineering automation platform that enables authoring and workflow processes. It is designed to scale with terabytes.
  • Previous
  • You're on page 1
  • 2
  • Next