Best Data Engineering Tools for Snowflake

Find and compare the best Data Engineering tools for Snowflake in 2025

Use the comparison tool below to compare the top Data Engineering tools for Snowflake on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • 2
    Aggua Reviews
    Aggua is an AI platform with augmented data fabric that gives data and business teams access to their data. It creates Trust and provides practical Data Insights for a more holistic and data-centric decision making. With just a few clicks, you can find out what's happening under the hood of your data stack. You can access data lineage, cost insights and documentation without interrupting your data engineer's day. With automated lineage, data engineers and architects can spend less time manually tracing what data type changes will break in their data pipelines, tables, and infrastructure.