Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Sulley is a comprehensive fuzz testing framework and engine that incorporates various extensible components. In my view, it surpasses the functionality of most previously established fuzzing technologies, regardless of whether they are commercial or available in the public domain. The framework is designed to streamline not only the representation of data but also its transmission and instrumentation processes. As a fully automated fuzzing solution developed entirely in Python, Sulley operates without requiring human intervention. Beyond impressive capabilities in data generation, Sulley offers a range of essential features expected from a contemporary fuzzer. It meticulously monitors network activity and keeps detailed records for thorough analysis. Additionally, Sulley is equipped to instrument and evaluate the health of the target system, with the ability to revert to a stable state using various methods when necessary. It efficiently detects, tracks, and categorizes faults that arise during testing. Furthermore, Sulley has the capability to perform fuzzing in parallel, which dramatically enhances testing speed. It can also autonomously identify unique sequences of test cases that lead to faults, thereby improving the overall effectiveness of the testing process. This combination of features positions Sulley as a powerful tool for security testing and vulnerability detection.

Description

AFL-Unicorn provides the capability to fuzz any binary that can be emulated using the Unicorn Engine, allowing you to target specific code segments for testing. If you can emulate the desired code with the Unicorn Engine, you can effectively use AFL-Unicorn for fuzzing purposes. The Unicorn Mode incorporates block-edge instrumentation similar to what AFL's QEMU mode employs, enabling AFL to gather block coverage information from the emulated code snippets to drive its input generation process. The key to this functionality lies in the careful setup of a Unicorn-based test harness, which is responsible for loading the target code, initializing the state, and incorporating data mutated by AFL from its disk storage. After establishing these parameters, the test harness emulates the binary code of the target, and upon encountering a crash or error, triggers a signal to indicate the issue. While this framework has primarily been tested on Ubuntu 16.04 LTS, it is designed to be compatible with any operating system that can run both AFL and Unicorn without issues. With this setup, developers can enhance their fuzzing efforts and improve their binary analysis workflows significantly.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Python

Integrations

Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

OpenRCE

Website

github.com/OpenRCE/sulley

Vendor Details

Company Name

Battelle

Website

github.com/Battelle/afl-unicorn

Product Features

Product Features

Alternatives

afl-unicorn Reviews

afl-unicorn

Battelle

Alternatives

Jazzer Reviews

Jazzer

Code Intelligence
LibFuzzer Reviews

LibFuzzer

LLVM Project
Honggfuzz Reviews

Honggfuzz

Google
Peach Fuzzer Reviews

Peach Fuzzer

Peach Tech