Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Red Hat® OpenShift® Streams for Apache Kafka is a cloud-managed service designed to enhance the developer experience for creating, deploying, and scaling cloud-native applications, as well as for modernizing legacy systems. This service simplifies the processes of creating, discovering, and connecting to real-time data streams, regardless of their deployment location. Streams play a crucial role in the development of event-driven applications and data analytics solutions. By enabling seamless operations across distributed microservices and handling large data transfer volumes with ease, it allows teams to leverage their strengths, accelerate their time to value, and reduce operational expenses. Additionally, OpenShift Streams for Apache Kafka features a robust Kafka ecosystem and is part of a broader suite of cloud services within the Red Hat OpenShift product family, empowering users to develop a diverse array of data-driven applications. With its powerful capabilities, this service ultimately supports organizations in navigating the complexities of modern software development.
Description
Microservices architecture enables efficient streaming and batch data processing specifically designed for platforms like Cloud Foundry and Kubernetes. By utilizing Spring Cloud Data Flow, users can effectively design intricate topologies for their data pipelines, which feature Spring Boot applications developed with the Spring Cloud Stream or Spring Cloud Task frameworks. This powerful tool caters to a variety of data processing needs, encompassing areas such as ETL, data import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server leverages Spring Cloud Deployer to facilitate the deployment of these data pipelines, which consist of Spring Cloud Stream or Spring Cloud Task applications, onto contemporary infrastructures like Cloud Foundry and Kubernetes. Additionally, a curated selection of pre-built starter applications for streaming and batch tasks supports diverse data integration and processing scenarios, aiding users in their learning and experimentation endeavors. Furthermore, developers have the flexibility to create custom stream and task applications tailored to specific middleware or data services, all while adhering to the user-friendly Spring Boot programming model. This adaptability makes Spring Cloud Data Flow a valuable asset for organizations looking to optimize their data workflows.
API Access
Has API
API Access
Has API
Integrations
Apache Kafka
Apache Tomcat
Cloud Foundry
Kubernetes
Mariner Financial Wellness
Spring Framework
VMware Cloud
Wiiisdom Ops
Integrations
Apache Kafka
Apache Tomcat
Cloud Foundry
Kubernetes
Mariner Financial Wellness
Spring Framework
VMware Cloud
Wiiisdom Ops
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Red Hat
Founded
1993
Country
United States
Website
www.redhat.com/en/technologies/cloud-computing/openshift/openshift-streams-for-apache-kafka
Vendor Details
Company Name
Spring
Website
spring.io/projects/spring-cloud-dataflow