Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
Fast and adaptable, the concepts of vectorization, indexing, and broadcasting in NumPy have become the benchmark for array computation in the present day. This powerful library provides an extensive array of mathematical functions, random number generators, linear algebra capabilities, Fourier transforms, and beyond. NumPy is compatible with a diverse array of hardware and computing environments, seamlessly integrating with distributed systems, GPU libraries, and sparse array frameworks. At its core, NumPy is built upon highly optimized C code, which allows users to experience the speed associated with compiled languages while enjoying the flexibility inherent to Python. The high-level syntax of NumPy makes it user-friendly and efficient for programmers across various backgrounds and skill levels. By combining the computational efficiency of languages like C and Fortran with the accessibility of Python, NumPy simplifies complex tasks, resulting in clear and elegant solutions. Ultimately, this library empowers users to tackle a wide range of numerical problems with confidence and ease.
Description
Ruffus is a Python library designed for creating computation pipelines, known for being open-source, robust, and user-friendly, making it particularly popular in scientific and bioinformatics fields. This tool streamlines the automation of scientific and analytical tasks with minimal hassle and effort, accommodating both simple and extremely complex pipelines that might confuse traditional tools like make or scons. It embraces a straightforward approach without relying on "clever magic" or pre-processing, focusing instead on a lightweight syntax that aims to excel in its specific function. Under the permissive MIT free software license, Ruffus can be freely utilized and incorporated, even in proprietary applications. For optimal performance, it is advisable to execute your pipeline in a separate “working” directory, distinct from your original data. Ruffus serves as a versatile Python module for constructing computational workflows and requires a Python version of 2.6 or newer, or 3.0 and above, ensuring compatibility across various environments. Moreover, its simplicity and effectiveness make it a valuable tool for researchers looking to enhance their data processing capabilities.
API Access
Has API
API Access
Has API
Integrations
3LC
Avanzai
Coiled
Cython
Dash
Flower
Gensim
JAX
MPI for Python (mpi4py)
PaizaCloud
Integrations
3LC
Avanzai
Coiled
Cython
Dash
Flower
Gensim
JAX
MPI for Python (mpi4py)
PaizaCloud
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
NumPy
Website
numpy.org
Vendor Details
Company Name
ruffus
Website
www.ruffus.org.uk