Average Ratings 1 Rating

Total
ease
features
design
support

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Fast and adaptable, the concepts of vectorization, indexing, and broadcasting in NumPy have become the benchmark for array computation in the present day. This powerful library provides an extensive array of mathematical functions, random number generators, linear algebra capabilities, Fourier transforms, and beyond. NumPy is compatible with a diverse array of hardware and computing environments, seamlessly integrating with distributed systems, GPU libraries, and sparse array frameworks. At its core, NumPy is built upon highly optimized C code, which allows users to experience the speed associated with compiled languages while enjoying the flexibility inherent to Python. The high-level syntax of NumPy makes it user-friendly and efficient for programmers across various backgrounds and skill levels. By combining the computational efficiency of languages like C and Fortran with the accessibility of Python, NumPy simplifies complex tasks, resulting in clear and elegant solutions. Ultimately, this library empowers users to tackle a wide range of numerical problems with confidence and ease.

Description

Ruffus is a Python library designed for creating computation pipelines, known for being open-source, robust, and user-friendly, making it particularly popular in scientific and bioinformatics fields. This tool streamlines the automation of scientific and analytical tasks with minimal hassle and effort, accommodating both simple and extremely complex pipelines that might confuse traditional tools like make or scons. It embraces a straightforward approach without relying on "clever magic" or pre-processing, focusing instead on a lightweight syntax that aims to excel in its specific function. Under the permissive MIT free software license, Ruffus can be freely utilized and incorporated, even in proprietary applications. For optimal performance, it is advisable to execute your pipeline in a separate “working” directory, distinct from your original data. Ruffus serves as a versatile Python module for constructing computational workflows and requires a Python version of 2.6 or newer, or 3.0 and above, ensuring compatibility across various environments. Moreover, its simplicity and effectiveness make it a valuable tool for researchers looking to enhance their data processing capabilities.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

3LC
Avanzai
Coiled
Cython
Dash
Flower
Gensim
JAX
MPI for Python (mpi4py)
PaizaCloud
PyCharm
Python
Spyder
Unify AI
Visual Studio Code
Yamak.ai
Yandex Data Proc
h5py
imageio
scikit-learn

Integrations

3LC
Avanzai
Coiled
Cython
Dash
Flower
Gensim
JAX
MPI for Python (mpi4py)
PaizaCloud
PyCharm
Python
Spyder
Unify AI
Visual Studio Code
Yamak.ai
Yandex Data Proc
h5py
imageio
scikit-learn

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

NumPy

Website

numpy.org

Vendor Details

Company Name

ruffus

Website

www.ruffus.org.uk

Product Features

Alternatives

h5py Reviews

h5py

HDF5

Alternatives