Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
NVIDIA TensorRT is a comprehensive suite of APIs designed for efficient deep learning inference, which includes a runtime for inference and model optimization tools that ensure minimal latency and maximum throughput in production scenarios. Leveraging the CUDA parallel programming architecture, TensorRT enhances neural network models from all leading frameworks, adjusting them for reduced precision while maintaining high accuracy, and facilitating their deployment across a variety of platforms including hyperscale data centers, workstations, laptops, and edge devices. It utilizes advanced techniques like quantization, fusion of layers and tensors, and precise kernel tuning applicable to all NVIDIA GPU types, ranging from edge devices to powerful data centers. Additionally, the TensorRT ecosystem features TensorRT-LLM, an open-source library designed to accelerate and refine the inference capabilities of contemporary large language models on the NVIDIA AI platform, allowing developers to test and modify new LLMs efficiently through a user-friendly Python API. This innovative approach not only enhances performance but also encourages rapid experimentation and adaptation in the evolving landscape of AI applications.
Description
TensorBoard serves as a robust visualization platform within TensorFlow, specifically crafted to aid in the experimentation process of machine learning. It allows users to monitor and illustrate various metrics, such as loss and accuracy, while also offering insights into the model architecture through visual representations of its operations and layers. Users can observe the evolution of weights, biases, and other tensors via histograms over time, and it also allows for the projection of embeddings into a more manageable lower-dimensional space, along with the capability to display various forms of data, including images, text, and audio. Beyond these visualization features, TensorBoard includes profiling tools that help streamline and enhance the performance of TensorFlow applications. Collectively, these functionalities equip practitioners with essential tools for understanding, troubleshooting, and refining their TensorFlow projects, ultimately improving the efficiency of the machine learning process. In the realm of machine learning, accurate measurement is crucial for enhancement, and TensorBoard fulfills this need by supplying the necessary metrics and visual insights throughout the workflow. This platform not only tracks various experimental metrics but also facilitates the visualization of complex model structures and the dimensionality reduction of embeddings, reinforcing its importance in the machine learning toolkit.
API Access
Has API
API Access
Has API
Integrations
Dataoorts GPU Cloud
TensorFlow
CUDA
Google Colab
Hugging Face
LaunchX
MATLAB
NVIDIA AI Enterprise
NVIDIA Broadcast
NVIDIA Clara
Integrations
Dataoorts GPU Cloud
TensorFlow
CUDA
Google Colab
Hugging Face
LaunchX
MATLAB
NVIDIA AI Enterprise
NVIDIA Broadcast
NVIDIA Clara
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/tensorrt
Vendor Details
Company Name
Tensorflow
Country
United States
Website
www.tensorflow.org/tensorboard