Best TensorBoard Alternatives in 2025
Find the top alternatives to TensorBoard currently available. Compare ratings, reviews, pricing, and features of TensorBoard alternatives in 2025. Slashdot lists the best TensorBoard alternatives on the market that offer competing products that are similar to TensorBoard. Sort through TensorBoard alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
666 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
3
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive service that empowers developers and data scientists to efficiently create, train, and deploy machine learning (ML) models with ease. By alleviating the burdens associated with the various stages of ML processes, SageMaker simplifies the journey towards producing high-quality models. In contrast, conventional ML development tends to be a complicated, costly, and iterative undertaking, often compounded by the lack of integrated tools that support the entire machine learning pipeline. As a result, practitioners are forced to piece together disparate tools and workflows, leading to potential errors and wasted time. Amazon SageMaker addresses this issue by offering an all-in-one toolkit that encompasses every necessary component for machine learning, enabling quicker production times while significantly reducing effort and expenses. Additionally, Amazon SageMaker Studio serves as a unified, web-based visual platform that facilitates all aspects of ML development, granting users comprehensive access, control, and insight into every required procedure. This streamlined approach not only enhances productivity but also fosters innovation within the field of machine learning. -
4
Keepsake
Replicate
FreeKeepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively. -
5
Visdom
Meta
Visdom serves as a powerful visualization tool designed to create detailed visual representations of real-time data, assisting researchers and developers in monitoring their scientific experiments conducted on remote servers. These visualizations can be accessed through web browsers and effortlessly shared with colleagues, fostering collaboration. With its interactive capabilities, Visdom is tailored to enhance the scientific experimentation process. Users can easily broadcast visual representations of plots, images, and text, making it accessible for both personal review and team collaboration. The organization of the visualization space can be managed via the Visdom user interface or through programmatic means, enabling researchers and developers to thoroughly examine experiment outcomes across various projects and troubleshoot their code. Additionally, features such as windows, environments, states, filters, and views offer versatile options for managing and viewing critical experimental data. Ultimately, Visdom empowers users to build and tailor visualizations specifically suited for their projects, streamlining the research workflow. Its adaptability and range of features make it an invaluable asset for enhancing the clarity and accessibility of scientific data. -
6
neptune.ai
neptune.ai
$49 per monthNeptune.ai serves as a robust platform for machine learning operations (MLOps), aimed at simplifying the management of experiment tracking, organization, and sharing within the model-building process. It offers a thorough environment for data scientists and machine learning engineers to log data, visualize outcomes, and compare various model training sessions, datasets, hyperparameters, and performance metrics in real-time. Seamlessly integrating with widely-used machine learning libraries, Neptune.ai allows teams to effectively oversee both their research and production processes. Its features promote collaboration, version control, and reproducibility of experiments, ultimately boosting productivity and ensuring that machine learning initiatives are transparent and thoroughly documented throughout their entire lifecycle. This platform not only enhances team efficiency but also provides a structured approach to managing complex machine learning workflows. -
7
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with diverse, efficient tools for swiftly constructing, training, and deploying machine learning models. Speed up market readiness and enhance team collaboration through top-notch MLOps—akin to DevOps but tailored for machine learning. Foster innovation on a secure and trusted platform that prioritizes responsible machine learning practices. Cater to all skill levels by offering both code-first approaches and user-friendly drag-and-drop designers, alongside automated machine learning options. Leverage comprehensive MLOps functionalities that seamlessly integrate into current DevOps workflows and oversee the entire ML lifecycle effectively. Emphasize responsible ML practices, ensuring model interpretability and fairness, safeguarding data through differential privacy and confidential computing, while maintaining oversight of the ML lifecycle with audit trails and datasheets. Furthermore, provide exceptional support for a variety of open-source frameworks and programming languages, including but not limited to MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, making it easier for teams to adopt best practices in their machine learning projects. With these capabilities, organizations can enhance their operational efficiency and drive innovation more effectively. -
8
Weights & Biases
Weights & Biases
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects. Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers. Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources. -
9
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
10
DVC
iterative.ai
Data Version Control (DVC) is an open-source system specifically designed for managing version control in data science and machine learning initiatives. It provides a Git-like interface that allows users to systematically organize data, models, and experiments, making it easier to oversee and version various types of files such as images, audio, video, and text. This system helps structure the machine learning modeling process into a reproducible workflow, ensuring consistency in experimentation. DVC's integration with existing software engineering tools is seamless, empowering teams to articulate every facet of their machine learning projects through human-readable metafiles that detail data and model versions, pipelines, and experiments. This methodology promotes adherence to best practices and the use of well-established engineering tools, thus bridging the gap between the realms of data science and software development. By utilizing Git, DVC facilitates the versioning and sharing of complete machine learning projects, encompassing source code, configurations, parameters, metrics, data assets, and processes by committing the DVC metafiles as placeholders. Furthermore, its user-friendly approach encourages collaboration among team members, enhancing productivity and innovation within projects. -
11
Polyaxon
Polyaxon
A comprehensive platform designed for reproducible and scalable applications in Machine Learning and Deep Learning. Explore the array of features and products that support the leading platform for managing data science workflows today. Polyaxon offers an engaging workspace equipped with notebooks, tensorboards, visualizations, and dashboards. It facilitates team collaboration, allowing members to share, compare, and analyze experiments and their outcomes effortlessly. With built-in version control, you can achieve reproducible results for both code and experiments. Polyaxon can be deployed in various environments, whether in the cloud, on-premises, or in hybrid setups, ranging from a single laptop to container management systems or Kubernetes. Additionally, you can easily adjust resources by spinning up or down, increasing the number of nodes, adding GPUs, and expanding storage capabilities as needed. This flexibility ensures that your data science projects can scale effectively to meet growing demands. -
12
Determined AI
Determined AI
With Determined, you can engage in distributed training without needing to modify your model code, as it efficiently manages the provisioning of machines, networking, data loading, and fault tolerance. Our open-source deep learning platform significantly reduces training times to mere hours or minutes, eliminating the lengthy process of days or weeks. Gone are the days of tedious tasks like manual hyperparameter tuning, re-running failed jobs, and the constant concern over hardware resources. Our advanced distributed training solution not only surpasses industry benchmarks but also requires no adjustments to your existing code and seamlessly integrates with our cutting-edge training platform. Additionally, Determined features built-in experiment tracking and visualization that automatically logs metrics, making your machine learning projects reproducible and fostering greater collaboration within your team. This enables researchers to build upon each other's work and drive innovation in their respective fields, freeing them from the stress of managing errors and infrastructure. Ultimately, this streamlined approach empowers teams to focus on what they do best—creating and refining their models. -
13
NVIDIA DIGITS
NVIDIA DIGITS
The NVIDIA Deep Learning GPU Training System (DIGITS) empowers engineers and data scientists by making deep learning accessible and efficient. With DIGITS, users can swiftly train highly precise deep neural networks (DNNs) tailored for tasks like image classification, segmentation, and object detection. It streamlines essential deep learning processes, including data management, neural network design, multi-GPU training, real-time performance monitoring through advanced visualizations, and selecting optimal models for deployment from the results browser. The interactive nature of DIGITS allows data scientists to concentrate on model design and training instead of getting bogged down with programming and debugging. Users can train models interactively with TensorFlow while also visualizing the model architecture via TensorBoard. Furthermore, DIGITS supports the integration of custom plug-ins, facilitating the importation of specialized data formats such as DICOM, commonly utilized in medical imaging. This comprehensive approach ensures that engineers can maximize their productivity while leveraging advanced deep learning techniques. -
14
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
15
TFLearn
TFLearn
TFlearn is a flexible and clear deep learning framework that operates on top of TensorFlow. Its primary aim is to offer a more user-friendly API for TensorFlow, which accelerates the experimentation process while ensuring complete compatibility and clarity with the underlying framework. The library provides an accessible high-level interface for developing deep neural networks, complete with tutorials and examples for guidance. It facilitates rapid prototyping through its modular design, which includes built-in neural network layers, regularizers, optimizers, and metrics. Users benefit from full transparency regarding TensorFlow, as all functions are tensor-based and can be utilized independently of TFLearn. Additionally, it features robust helper functions to assist in training any TensorFlow graph, accommodating multiple inputs, outputs, and optimization strategies. The graph visualization is user-friendly and aesthetically pleasing, offering insights into weights, gradients, activations, and more. Moreover, the high-level API supports a wide range of contemporary deep learning architectures, encompassing Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, and Generative networks, making it a versatile tool for researchers and developers alike. -
16
Guild AI
Guild AI
FreeGuild AI serves as an open-source toolkit for tracking experiments, crafted to introduce systematic oversight into machine learning processes, thereby allowing users to enhance model creation speed and quality. By automatically documenting every facet of training sessions as distinct experiments, it promotes thorough tracking and evaluation. Users can conduct comparisons and analyses of different runs, which aids in refining their understanding and progressively enhancing their models. The toolkit also streamlines hyperparameter tuning via advanced algorithms that are executed through simple commands, doing away with the necessity for intricate trial setups. Furthermore, it facilitates the automation of workflows, which not only speeds up development but also minimizes errors while yielding quantifiable outcomes. Guild AI is versatile, functioning on all major operating systems and integrating effortlessly with pre-existing software engineering tools. In addition to this, it offers support for a range of remote storage solutions, such as Amazon S3, Google Cloud Storage, Azure Blob Storage, and SSH servers, making it a highly adaptable choice for developers. This flexibility ensures that users can tailor their workflows to fit their specific needs, further enhancing the toolkit’s utility in diverse machine learning environments. -
17
DagsHub
DagsHub
$9 per monthDagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains. -
18
Keras is an API tailored for human users rather than machines. It adheres to optimal practices for alleviating cognitive strain by providing consistent and straightforward APIs, reducing the number of necessary actions for typical tasks, and delivering clear and actionable error messages. Additionally, it boasts comprehensive documentation alongside developer guides. Keras is recognized as the most utilized deep learning framework among the top five winning teams on Kaggle, showcasing its popularity and effectiveness. By simplifying the process of conducting new experiments, Keras enables users to implement more innovative ideas at a quicker pace than their competitors, which is a crucial advantage for success. Built upon TensorFlow 2.0, Keras serves as a robust framework capable of scaling across large GPU clusters or entire TPU pods with ease. Utilizing the full deployment potential of the TensorFlow platform is not just feasible; it is remarkably straightforward. You have the ability to export Keras models to JavaScript for direct browser execution, transform them to TF Lite for use on iOS, Android, and embedded devices, and seamlessly serve Keras models through a web API. This versatility makes Keras an invaluable tool for developers looking to maximize their machine learning capabilities.
-
19
Kubeflow
Kubeflow
The Kubeflow initiative aims to simplify the process of deploying machine learning workflows on Kubernetes, ensuring they are both portable and scalable. Rather than duplicating existing services, our focus is on offering an easy-to-use platform for implementing top-tier open-source ML systems across various infrastructures. Kubeflow is designed to operate seamlessly wherever Kubernetes is running. It features a specialized TensorFlow training job operator that facilitates the training of machine learning models, particularly excelling in managing distributed TensorFlow training tasks. Users can fine-tune the training controller to utilize either CPUs or GPUs, adapting it to different cluster configurations. In addition, Kubeflow provides functionalities to create and oversee interactive Jupyter notebooks, allowing for tailored deployments and resource allocation specific to data science tasks. You can test and refine your workflows locally before transitioning them to a cloud environment whenever you are prepared. This flexibility empowers data scientists to iterate efficiently, ensuring that their models are robust and ready for production. -
20
HoneyHive
HoneyHive
AI engineering can be transparent rather than opaque. With a suite of tools for tracing, assessment, prompt management, and more, HoneyHive emerges as a comprehensive platform for AI observability and evaluation, aimed at helping teams create dependable generative AI applications. This platform equips users with resources for model evaluation, testing, and monitoring, promoting effective collaboration among engineers, product managers, and domain specialists. By measuring quality across extensive test suites, teams can pinpoint enhancements and regressions throughout the development process. Furthermore, it allows for the tracking of usage, feedback, and quality on a large scale, which aids in swiftly identifying problems and fostering ongoing improvements. HoneyHive is designed to seamlessly integrate with various model providers and frameworks, offering the necessary flexibility and scalability to accommodate a wide range of organizational requirements. This makes it an ideal solution for teams focused on maintaining the quality and performance of their AI agents, delivering a holistic platform for evaluation, monitoring, and prompt management, ultimately enhancing the overall effectiveness of AI initiatives. As organizations increasingly rely on AI, tools like HoneyHive become essential for ensuring robust performance and reliability. -
21
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
-
22
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
23
AWS Neuron
Amazon Web Services
It enables high-performance training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances, which are powered by AWS Trainium. For deploying models, the system offers efficient and low-latency inference capabilities on Amazon EC2 Inf1 instances that utilize AWS Inferentia and on Inf2 instances based on AWS Inferentia2. With the Neuron software development kit, users can seamlessly leverage popular machine learning frameworks like TensorFlow and PyTorch, allowing for the optimal training and deployment of machine learning models on EC2 instances without extensive code modifications or being locked into specific vendor solutions. The AWS Neuron SDK, designed for both Inferentia and Trainium accelerators, integrates smoothly with PyTorch and TensorFlow, ensuring users can maintain their existing workflows with minimal adjustments. Additionally, for distributed model training, the Neuron SDK is compatible with libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and usability in various ML projects. This comprehensive support makes it easier for developers to manage their machine learning tasks efficiently. -
24
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a well-organized and secure collection of frameworks, dependencies, and tools designed to enhance deep learning capabilities in the cloud environment. These Amazon Machine Images (AMIs), tailored for both Amazon Linux and Ubuntu, come pre-installed with a variety of popular frameworks such as TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, which facilitate seamless deployment and scaling of these tools. You can efficiently build sophisticated machine learning models aimed at advancing autonomous vehicle (AV) technologies, utilizing millions of virtual tests to validate these models safely. Furthermore, the solution streamlines the process of setting up and configuring AWS instances, thereby accelerating experimentation and assessment through the use of the latest frameworks and libraries, including Hugging Face Transformers. By leveraging advanced analytics, machine learning, and deep learning features, users can uncover trends and make informed predictions from diverse and raw health data, ultimately leading to improved decision-making in healthcare applications. This comprehensive approach enables practitioners to harness the full potential of deep learning while ensuring they remain at the forefront of innovation in the field. -
25
Google AI Edge
Google
FreeGoogle AI Edge presents an extensive range of tools and frameworks aimed at simplifying the integration of artificial intelligence into mobile, web, and embedded applications. By facilitating on-device processing, it minimizes latency, supports offline capabilities, and keeps data secure and local. Its cross-platform compatibility ensures that the same AI model can operate smoothly across various embedded systems. Additionally, it boasts multi-framework support, accommodating models developed in JAX, Keras, PyTorch, and TensorFlow. Essential features include low-code APIs through MediaPipe for standard AI tasks, which enable rapid incorporation of generative AI, as well as functionalities for vision, text, and audio processing. Users can visualize their model's evolution through conversion and quantification processes, while also overlaying results to diagnose performance issues. The platform encourages exploration, debugging, and comparison of models in a visual format, allowing for easier identification of critical hotspots. Furthermore, it enables users to view both comparative and numerical performance metrics, enhancing the debugging process and improving overall model optimization. This powerful combination of features positions Google AI Edge as a pivotal resource for developers aiming to leverage AI in their applications. -
26
Lucidworks Fusion
Lucidworks
Fusion transforms siloed data into unique insights for each user. Lucidworks Fusion allows customers to easily deploy AI-powered search and data discovery applications in a modern, containerized cloud-native architecture. Data scientists can interact with these applications by using existing machine learning models. They can also quickly create and deploy new models with popular tools such as Python ML and TensorFlow. It is easier and less risk to manage Fusion cloud deployments. Lucidworks has modernized Fusion using a cloud-native microservices architecture orchestrated and managed by Kubernetes. Fusion allows customers to dynamically manage their application resources according to usage ebbs, flows, and reduce the effort of deploying Fusion and upgrading it. Fusion also helps avoid unscheduled downtime or performance degradation. Fusion supports Python machine learning models natively. Fusion can integrate your custom ML models. -
27
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
28
ML.NET
Microsoft
FreeML.NET is a versatile, open-source machine learning framework that is free to use and compatible across platforms, enabling .NET developers to create tailored machine learning models using C# or F# while remaining within the .NET environment. This framework encompasses a wide range of machine learning tasks such as classification, regression, clustering, anomaly detection, and recommendation systems. Additionally, ML.NET seamlessly integrates with other renowned machine learning frameworks like TensorFlow and ONNX, which broadens the possibilities for tasks like image classification and object detection. It comes equipped with user-friendly tools such as Model Builder and the ML.NET CLI, leveraging Automated Machine Learning (AutoML) to streamline the process of developing, training, and deploying effective models. These innovative tools automatically analyze various algorithms and parameters to identify the most efficient model for specific use cases. Moreover, ML.NET empowers developers to harness the power of machine learning without requiring extensive expertise in the field. -
29
Universal Sentence Encoder
Tensorflow
The Universal Sentence Encoder (USE) transforms text into high-dimensional vectors that are useful for a range of applications, including text classification, semantic similarity, and clustering. It provides two distinct model types: one leveraging the Transformer architecture and another utilizing a Deep Averaging Network (DAN), which helps to balance accuracy and computational efficiency effectively. The Transformer-based variant generates context-sensitive embeddings by analyzing the entire input sequence at once, while the DAN variant creates embeddings by averaging the individual word embeddings, which are then processed through a feedforward neural network. These generated embeddings not only support rapid semantic similarity assessments but also improve the performance of various downstream tasks, even with limited supervised training data. Additionally, the USE can be easily accessed through TensorFlow Hub, making it simple to incorporate into diverse applications. This accessibility enhances its appeal to developers looking to implement advanced natural language processing techniques seamlessly. -
30
GPUonCLOUD
GPUonCLOUD
$1 per hourIn the past, tasks such as deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling could take several days or even weeks to complete. Thanks to GPUonCLOUD’s specialized GPU servers, these processes can now be accomplished in just a few hours. You can choose from a range of pre-configured systems or ready-to-use instances equipped with GPUs that support popular deep learning frameworks like TensorFlow, PyTorch, MXNet, and TensorRT, along with libraries such as the real-time computer vision library OpenCV, all of which enhance your AI/ML model-building journey. Among the diverse selection of GPUs available, certain servers are particularly well-suited for graphics-intensive tasks and multiplayer accelerated gaming experiences. Furthermore, instant jumpstart frameworks significantly boost the speed and flexibility of the AI/ML environment while ensuring effective and efficient management of the entire lifecycle. This advancement not only streamlines workflows but also empowers users to innovate at an unprecedented pace. -
31
NVIDIA TensorRT
NVIDIA
FreeNVIDIA TensorRT is a comprehensive suite of APIs designed for efficient deep learning inference, which includes a runtime for inference and model optimization tools that ensure minimal latency and maximum throughput in production scenarios. Leveraging the CUDA parallel programming architecture, TensorRT enhances neural network models from all leading frameworks, adjusting them for reduced precision while maintaining high accuracy, and facilitating their deployment across a variety of platforms including hyperscale data centers, workstations, laptops, and edge devices. It utilizes advanced techniques like quantization, fusion of layers and tensors, and precise kernel tuning applicable to all NVIDIA GPU types, ranging from edge devices to powerful data centers. Additionally, the TensorRT ecosystem features TensorRT-LLM, an open-source library designed to accelerate and refine the inference capabilities of contemporary large language models on the NVIDIA AI platform, allowing developers to test and modify new LLMs efficiently through a user-friendly Python API. This innovative approach not only enhances performance but also encourages rapid experimentation and adaptation in the evolving landscape of AI applications. -
32
luminoth
luminoth
FreeLuminoth is an open-source framework designed for computer vision applications, currently focusing on object detection but with aspirations to expand its capabilities. As it is in the alpha stage, users should be aware that both internal and external interfaces, including the command line, are subject to change as development progresses. For those interested in utilizing GPU support, it is recommended to install the GPU variant of TensorFlow via pip with the command pip install tensorflow-gpu; alternatively, users can opt for the CPU version by executing pip install tensorflow. Additionally, Luminoth offers the convenience of installing TensorFlow directly by using either pip install luminoth[tf] or pip install luminoth[tf-gpu], depending on the desired TensorFlow version. Overall, Luminoth represents a promising tool in the evolving landscape of computer vision technology. -
33
Horovod
Horovod
FreeOriginally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology. -
34
We have listened to customer feedback and have reduced the prices for both our bare metal and virtual server offerings while maintaining the same level of power and flexibility. A graphics processing unit (GPU) serves as an additional layer of computational ability that complements the central processing unit (CPU). By selecting IBM Cloud® for your GPU needs, you gain access to one of the most adaptable server selection frameworks in the market, effortless integration with your existing IBM Cloud infrastructure, APIs, and applications, along with a globally distributed network of data centers. When it comes to performance, IBM Cloud Bare Metal Servers equipped with GPUs outperform AWS servers on five distinct TensorFlow machine learning models. We provide both bare metal GPUs and virtual server GPUs, whereas Google Cloud exclusively offers virtual server instances. In a similar vein, Alibaba Cloud restricts its GPU offerings to virtual machines only, highlighting the unique advantages of our versatile options. Additionally, our bare metal GPUs are designed to deliver superior performance for demanding workloads, ensuring you have the necessary resources to drive innovation.
-
35
LeaderGPU
LeaderGPU
€0.14 per minuteTraditional CPUs are struggling to meet the growing demands for enhanced computing capabilities, while GPU processors can outperform them by a factor of 100 to 200 in terms of data processing speed. We offer specialized servers tailored for machine learning and deep learning, featuring unique capabilities. Our advanced hardware incorporates the NVIDIA® GPU chipset, renowned for its exceptional operational speed. Among our offerings are the latest Tesla® V100 cards, which boast remarkable processing power. Our systems are optimized for popular deep learning frameworks such as TensorFlow™, Caffe2, Torch, Theano, CNTK, and MXNet™. We provide development tools that support programming languages including Python 2, Python 3, and C++. Additionally, we do not impose extra fees for additional services, meaning that disk space and traffic are fully integrated into the basic service package. Moreover, our servers are versatile enough to handle a range of tasks, including video processing and rendering. Customers of LeaderGPU® can easily access a graphical interface through RDP right from the start, ensuring a seamless user experience. This comprehensive approach positions us as a leading choice for those seeking powerful computational solutions. -
36
Amazon EC2 Inf1 Instances
Amazon
$0.228 per hourAmazon EC2 Inf1 instances are specifically engineered to provide efficient and high-performance machine learning inference at a lower cost. These instances can achieve throughput levels that are 2.3 times higher and costs per inference that are 70% lower than those of other Amazon EC2 offerings. Equipped with up to 16 AWS Inferentia chips—dedicated ML inference accelerators developed by AWS—Inf1 instances also include 2nd generation Intel Xeon Scalable processors, facilitating up to 100 Gbps networking bandwidth which is essential for large-scale machine learning applications. They are particularly well-suited for a range of applications, including search engines, recommendation systems, computer vision tasks, speech recognition, natural language processing, personalization features, and fraud detection mechanisms. Additionally, developers can utilize the AWS Neuron SDK to deploy their machine learning models on Inf1 instances, which supports integration with widely-used machine learning frameworks such as TensorFlow, PyTorch, and Apache MXNet, thus enabling a smooth transition with minimal alterations to existing code. This combination of advanced hardware and software capabilities positions Inf1 instances as a powerful choice for organizations looking to optimize their machine learning workloads. -
37
Bayesforge
Quantum Programming Studio
Bayesforge™ is a specialized Linux machine image designed to provide top-tier open source software tailored for data scientists in need of sophisticated analytical tools, alongside those involved in quantum computing and computational mathematics who want to utilize prominent quantum computing frameworks. This image integrates widely used machine learning frameworks like PyTorch and TensorFlow with open source offerings from D-Wave, Rigetti, IBM Quantum Experience, and Google's innovative quantum programming language Cirq, in addition to various advanced quantum computing frameworks. For example, it features our quantum fog modeling framework and the Qubiter quantum compiler, which is capable of cross-compiling to major architectures. Users can easily access all software through the Jupyter WebUI, which boasts a modular design, enabling coding in languages such as Python, R, and Octave, thus providing a versatile environment for a diverse range of scientific and computational tasks. This comprehensive setup not only enhances productivity but also fosters collaboration among practitioners from different domains. -
38
Apache Beam
Apache Software Foundation
Batch and streaming data processing can be accomplished most easily with a flexible approach that allows you to write once and run anywhere, making it ideal for critical production tasks. Apache Beam seamlessly pulls data from a variety of sources, whether they reside on-premises or in the cloud. It processes your business logic for both batch and streaming scenarios effectively. The outcomes of your data processing are then directed to widely-used data sinks across the industry. With a unified programming model, every member of your data and application teams can work efficiently on both batch and streaming projects. Furthermore, Apache Beam is adaptable, serving as the foundation for initiatives such as TensorFlow Extended and Apache Hop. You can execute pipelines across different environments (runners), ensuring flexibility and reducing dependency on a single solution. The development is community-driven, offering support that aids in the evolution of your applications to meet specific requirements. This collaborative approach fosters innovation and responsiveness to changing data needs. -
39
Amazon EC2 Trn1 Instances
Amazon
$1.34 per hourAmazon's Elastic Compute Cloud (EC2) Trn1 instances, equipped with AWS Trainium processors, are specifically designed for efficient deep learning training, particularly for generative AI models like large language models and latent diffusion models. These instances provide significant cost savings, offering up to 50% lower training expenses compared to similar EC2 options. Trn1 instances can handle the training of deep learning models exceeding 100 billion parameters, applicable to a wide range of tasks such as summarizing text, generating code, answering questions, creating images and videos, making recommendations, and detecting fraud. To facilitate this process, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on AWS Inferentia chips. This toolkit seamlessly integrates with popular frameworks like PyTorch and TensorFlow, allowing users to leverage their existing code and workflows while utilizing Trn1 instances for model training. This makes the transition to high-performance computing for AI development both smooth and efficient. -
40
Deep Lake
activeloop
$995 per monthWhile generative AI is a relatively recent development, our efforts over the last five years have paved the way for this moment. Deep Lake merges the strengths of data lakes and vector databases to craft and enhance enterprise-level solutions powered by large language models, allowing for continual refinement. However, vector search alone does not address retrieval challenges; a serverless query system is necessary for handling multi-modal data that includes embeddings and metadata. You can perform filtering, searching, and much more from either the cloud or your local machine. This platform enables you to visualize and comprehend your data alongside its embeddings, while also allowing you to monitor and compare different versions over time to enhance both your dataset and model. Successful enterprises are not solely reliant on OpenAI APIs, as it is essential to fine-tune your large language models using your own data. Streamlining data efficiently from remote storage to GPUs during model training is crucial. Additionally, Deep Lake datasets can be visualized directly in your web browser or within a Jupyter Notebook interface. You can quickly access various versions of your data, create new datasets through on-the-fly queries, and seamlessly stream them into frameworks like PyTorch or TensorFlow, thus enriching your data processing capabilities. This ensures that users have the flexibility and tools needed to optimize their AI-driven projects effectively. -
41
Amazon SageMaker equips users with all necessary tools and libraries to create machine learning models, allowing for an iterative approach in testing various algorithms and assessing their effectiveness to determine the optimal fit for specific applications. Within Amazon SageMaker, users can select from more than 15 built-in algorithms that are optimized for the platform, in addition to accessing over 150 pre-trained models from well-known model repositories with just a few clicks. The platform also includes a range of model-development resources such as Amazon SageMaker Studio Notebooks and RStudio, which facilitate small-scale experimentation to evaluate results and analyze performance data, ultimately leading to the creation of robust prototypes. By utilizing Amazon SageMaker Studio Notebooks, teams can accelerate the model-building process and enhance collaboration among members. These notebooks feature one-click access to Jupyter notebooks, allowing users to begin their work almost instantly. Furthermore, Amazon SageMaker simplifies the sharing of notebooks with just one click, promoting seamless collaboration and knowledge exchange among users. Overall, these features make Amazon SageMaker a powerful tool for anyone looking to develop effective machine learning solutions.
-
42
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, utilizing AWS Trainium2 chips, are specifically designed for the efficient training of generative AI models, such as large language models and diffusion models, delivering exceptional performance. These instances can achieve cost savings of up to 50% compared to similar Amazon EC2 offerings. With the capacity to support 16 Trainium2 accelerators, Trn2 instances provide an impressive compute power of up to 3 petaflops using FP16/BF16 precision and feature 512 GB of high-bandwidth memory. To enhance data and model parallelism, they incorporate NeuronLink, a high-speed, nonblocking interconnect, and are capable of offering up to 1600 Gbps of network bandwidth through second-generation Elastic Fabric Adapter (EFAv2). Deployed within EC2 UltraClusters, these instances can scale dramatically, accommodating up to 30,000 interconnected Trainium2 chips linked by a nonblocking petabit-scale network, which yields a staggering 6 exaflops of compute performance. Additionally, the AWS Neuron SDK seamlessly integrates with widely-used machine learning frameworks, including PyTorch and TensorFlow, allowing for a streamlined development experience. This combination of powerful hardware and software support positions Trn2 instances as a premier choice for organizations aiming to advance their AI capabilities. -
43
Datatron
Datatron
Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions. -
44
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
45
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart serves as a comprehensive hub for machine learning (ML) that facilitates the acceleration of your ML endeavors. This platform offers access to a variety of built-in algorithms accompanied by pretrained models sourced from model hubs, along with pretrained foundation models that assist in tasks like article summarization and image creation. Additionally, it provides prebuilt solutions designed to address typical use cases. Users can also share ML artifacts, including models and notebooks, within their organization, thereby streamlining the process of ML model development and deployment. SageMaker JumpStart boasts an extensive library of hundreds of built-in algorithms with pretrained models available from reputable model hubs such as TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. Furthermore, the platform allows for the utilization of these built-in algorithms via the SageMaker Python SDK, which enhances accessibility for developers. The built-in algorithms encompass a range of common ML tasks, including data classifications for images, text, and tabular data, as well as sentiment analysis, ensuring a robust toolkit for machine learning practitioners. -
46
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
-
47
MinIO
MinIO
MinIO offers a powerful object storage solution that is entirely software-defined, allowing users to establish cloud-native data infrastructures tailored for machine learning, analytics, and various application data demands. What sets MinIO apart is its design centered around performance and compatibility with the S3 API, all while being completely open-source. This platform is particularly well-suited for expansive private cloud settings that prioritize robust security measures, ensuring critical availability for a wide array of workloads. Recognized as the fastest object storage server globally, MinIO achieves impressive READ/WRITE speeds of 183 GB/s and 171 GB/s on standard hardware, enabling it to serve as the primary storage layer for numerous tasks, including those involving Spark, Presto, TensorFlow, and H2O.ai, in addition to acting as an alternative to Hadoop HDFS. By incorporating insights gained from web-scale operations, MinIO simplifies the scaling process for object storage, starting with an individual cluster that can easily be federated with additional MinIO clusters as needed. This flexibility in scaling allows organizations to adapt their storage solutions efficiently as their data needs evolve. -
48
Amazon Elastic Inference
Amazon
Amazon Elastic Inference offers a cost-effective way to enhance Amazon EC2 and SageMaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference expenses by as much as 75%. It seamlessly supports models built with TensorFlow, Apache MXNet, PyTorch, and ONNX. Inference involves predicting outcomes based on a model that has already been trained. Notably, in the realm of deep learning, inference can account for up to 90% of total operational costs due to two main factors. The first factor is that dedicated GPU instances are primarily optimized for training rather than inference; training typically involves processing numerous data samples concurrently, whereas inference often handles one input at a time in real time, leading to minimal GPU resource usage. Consequently, this results in an inefficient cost structure for standalone GPU inference. Conversely, standalone CPU instances lack the necessary specialization for matrix operations and therefore tend to be inadequate for the speed requirements of deep learning inference. By integrating Elastic Inference, users can strike a balance between performance and cost, ensuring that their inference workloads are handled more efficiently. -
49
Groq
Groq
Groq aims to establish a benchmark for the speed of GenAI inference, facilitating the realization of real-time AI applications today. The newly developed LPU inference engine, which stands for Language Processing Unit, represents an innovative end-to-end processing system that ensures the quickest inference for demanding applications that involve a sequential aspect, particularly AI language models. Designed specifically to address the two primary bottlenecks faced by language models—compute density and memory bandwidth—the LPU surpasses both GPUs and CPUs in its computing capabilities for language processing tasks. This advancement significantly decreases the processing time for each word, which accelerates the generation of text sequences considerably. Moreover, by eliminating external memory constraints, the LPU inference engine achieves exponentially superior performance on language models compared to traditional GPUs. Groq's technology also seamlessly integrates with widely used machine learning frameworks like PyTorch, TensorFlow, and ONNX for inference purposes. Ultimately, Groq is poised to revolutionize the landscape of AI language applications by providing unprecedented inference speeds. -
50
Huawei Cloud ModelArts
Huawei Cloud
ModelArts, an all-encompassing AI development platform from Huawei Cloud, is crafted to optimize the complete AI workflow for both developers and data scientists. This platform encompasses a comprehensive toolchain that facilitates various phases of AI development, including data preprocessing, semi-automated data labeling, distributed training, automated model creation, and versatile deployment across cloud, edge, and on-premises systems. It is compatible with widely used open-source AI frameworks such as TensorFlow, PyTorch, and MindSpore, while also enabling the integration of customized algorithms to meet unique project requirements. The platform's end-to-end development pipeline fosters enhanced collaboration among DataOps, MLOps, and DevOps teams, resulting in improved development efficiency by as much as 50%. Furthermore, ModelArts offers budget-friendly AI computing resources with a range of specifications, supporting extensive distributed training and accelerating inference processes. This flexibility empowers organizations to adapt their AI solutions to meet evolving business challenges effectively.