Best TensorBoard Alternatives in 2025

Find the top alternatives to TensorBoard currently available. Compare ratings, reviews, pricing, and features of TensorBoard alternatives in 2025. Slashdot lists the best TensorBoard alternatives on the market that offer competing products that are similar to TensorBoard. Sort through TensorBoard alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
  • 2
    TensorFlow Reviews
    Open source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test.
  • 3
    Amazon SageMaker Reviews
    Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility.
  • 4
    Keepsake Reviews
    Keepsake, an open-source Python tool, is designed to provide versioning for machine learning models and experiments. It allows users to track code, hyperparameters and training data. It also tracks metrics and Python dependencies. Keepsake integrates seamlessly into existing workflows. It requires minimal code additions and allows users to continue training while Keepsake stores code and weights in Amazon S3 or Google Cloud Storage. This allows for the retrieval and deployment of code or weights at any checkpoint. Keepsake is compatible with a variety of machine learning frameworks including TensorFlow and PyTorch. It also supports scikit-learn and XGBoost. It also has features like experiment comparison that allow users to compare parameters, metrics and dependencies between experiments.
  • 5
    Visdom Reviews
    Visdom is an interactive visualization tool that helps researchers and developers keep track of their remote servers-based scientific experiments. Visdom visualizations can be viewed and shared in browsers. Visdom is an interactive visualization tool to support scientific experimentation. Visualizations can be broadcast to collaborators and yourself. Visdom's UI allows researchers and developers alike to organize the visualization space, allowing them to debug code and inspect results from multiple projects. Windows, environments, filters, and views are also available to organize and view important experimental data. Create and customize visualizations to suit your project.
  • 6
    neptune.ai Reviews

    neptune.ai

    neptune.ai

    $49 per month
    Neptune.ai, a platform for machine learning operations, is designed to streamline tracking, organizing and sharing of experiments, and model-building. It provides a comprehensive platform for data scientists and machine-learning engineers to log, visualise, and compare model training run, datasets and hyperparameters in real-time. Neptune.ai integrates seamlessly with popular machine-learning libraries, allowing teams to efficiently manage research and production workflows. Neptune.ai's features, which include collaboration, versioning and reproducibility of experiments, enhance productivity and help ensure that machine-learning projects are transparent and well documented throughout their lifecycle.
  • 7
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 8
    Weights & Biases Reviews
    Weights & Biases allows for experiment tracking, hyperparameter optimization and model and dataset versioning. With just 5 lines of code, you can track, compare, and visualise ML experiments. Add a few lines of code to your script and you'll be able to see live updates to your dashboard each time you train a different version of your model. Our hyperparameter search tool is scalable to a massive scale, allowing you to optimize models. Sweeps plug into your existing infrastructure and are lightweight. Save all the details of your machine learning pipeline, including data preparation, data versions, training and evaluation. It's easier than ever to share project updates. Add experiment logging to your script in a matter of minutes. Our lightweight integration is compatible with any Python script. W&B Weave helps developers build and iterate their AI applications with confidence.
  • 9
    MLflow Reviews
    MLflow is an open-source platform that manages the ML lifecycle. It includes experimentation, reproducibility and deployment. There is also a central model registry. MLflow currently has four components. Record and query experiments: data, code, config, results. Data science code can be packaged in a format that can be reproduced on any platform. Machine learning models can be deployed in a variety of environments. A central repository can store, annotate and discover models, as well as manage them. The MLflow Tracking component provides an API and UI to log parameters, code versions and metrics. It can also be used to visualize the results later. MLflow Tracking allows you to log and query experiments using Python REST, R API, Java API APIs, and REST. An MLflow Project is a way to package data science code in a reusable, reproducible manner. It is based primarily upon conventions. The Projects component also includes an API and command line tools to run projects.
  • 10
    DVC Reviews
    Data Version Control (DVC), an open-source version control system, is tailored for data science and ML projects. It provides a Git-like interface for organizing data, models, experiments, and allowing users to manage and version audio, video, text, and image files in storage. Users can also structure their machine learning modelling process into a reproducible work flow. DVC integrates seamlessly into existing software engineering tools. Teams can define any aspect of machine learning projects in metafiles that are readable by humans. This approach reduces the gap between software engineering and data science by allowing the use of established engineering toolsets and best practices. DVC leverages Git to enable versioning and sharing for entire machine learning projects. This includes source code, configurations and parameters, metrics and data assets.
  • 11
    TFLearn Reviews
    TFlearn, a modular and transparent deep-learning library built on top Tensorflow, is modular and transparent. It is a higher-level API for TensorFlow that allows experimentation to be accelerated and facilitated. However, it is fully compatible and transparent with TensorFlow. It is an easy-to-understand, high-level API to implement deep neural networks. There are tutorials and examples. Rapid prototyping with highly modular built-in neural networks layers, regularizers and optimizers. Tensorflow offers full transparency. All functions can be used without TFLearn and are built over Tensors. You can use these powerful helper functions to train any TensorFlow diagram. They are compatible with multiple inputs, outputs and optimizers. A beautiful graph visualization with details about weights and gradients, activations, and more. The API supports most of the latest deep learning models such as Convolutions and LSTM, BiRNN. BatchNorm, PReLU. Residual networks, Generate networks.
  • 12
    Determined AI Reviews
    Distributed training is possible without changing the model code. Determined takes care of provisioning, networking, data load, and fault tolerance. Our open-source deep-learning platform allows you to train your models in minutes and hours, not days or weeks. You can avoid tedious tasks such as manual hyperparameter tweaking, re-running failed jobs, or worrying about hardware resources. Our distributed training implementation is more efficient than the industry standard. It requires no code changes and is fully integrated into our state-ofthe-art platform. With its built-in experiment tracker and visualization, Determined records metrics and makes your ML project reproducible. It also allows your team to work together more easily. Instead of worrying about infrastructure and errors, your researchers can focus on their domain and build upon the progress made by their team.
  • 13
    Guild AI Reviews
    Guild AI is a free, open-source toolkit for experiment tracking. It allows users to build faster and better models by bringing systematic control to machine-learning workflows. It captures all details of training runs and treats them as unique experiments. This allows for comprehensive tracking and analysis. Users can compare and analyse runs to improve their understanding and incrementally enhance models. Guild AI simplifies hyperparameter optimization by applying state-of the-art algorithms via simple commands, eliminating complex trial setups. It also supports pipeline automation, accelerating model creation, reducing errors and providing measurable outcomes. The toolkit runs on all major operating system platforms and integrates seamlessly with existing software engineering applications. Guild AI supports a variety of remote storage types including Amazon S3, Google Cloud Storage and Azure Blob Storage.
  • 14
    DagsHub Reviews
    DagsHub, a collaborative platform for data scientists and machine-learning engineers, is designed to streamline and manage their projects. It integrates code and data, experiments and models in a unified environment to facilitate efficient project management and collaboration. The user-friendly interface includes features such as dataset management, experiment tracker, model registry, data and model lineage and model registry. DagsHub integrates seamlessly with popular MLOps software, allowing users the ability to leverage their existing workflows. DagsHub improves machine learning development efficiency, transparency, and reproducibility by providing a central hub for all project elements. DagsHub, a platform for AI/ML developers, allows you to manage and collaborate with your data, models and experiments alongside your code. DagsHub is designed to handle unstructured data, such as text, images, audio files, medical imaging and binary files.
  • 15
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 16
    NVIDIA DIGITS Reviews
    NVIDIA DeepLearning GPU Training System (DIGITS), puts deep learning in the hands of data scientists and engineers. DIGITS is a fast and accurate way to train deep neural networks (DNNs), for image classification, segmentation, and object detection tasks. DIGITS makes it easy to manage data, train neural networks on multi-GPU platforms, monitor performance with advanced visualizations and select the best model from the results browser for deployment. DIGITS is interactive, so data scientists can concentrate on designing and training networks and not programming and debugging. TensorFlow allows you to interactively train models and TensorBoard lets you visualize the model architecture. Integrate custom plugs to import special data formats, such as DICOM, used in medical imaging.
  • 17
    Polyaxon Reviews
    A platform for machine learning and deep learning applications that is reproducible and scaleable. Learn more about the products and features that make up today's most innovative platform to manage data science workflows. Polyaxon offers an interactive workspace that includes notebooks, tensorboards and visualizations. You can collaborate with your team and share and compare results. Reproducible results are possible with the built-in version control system for code and experiments. Polyaxon can be deployed on-premises, in the cloud, or in hybrid environments. This includes single laptops, container management platforms, and Kubernetes. You can spin up or down, add nodes, increase storage, and add more GPUs.
  • 18
    AWS Deep Learning AMIs Reviews
    AWS Deep Learning AMIs are a secure and curated set of frameworks, dependencies and tools that ML practitioners and researchers can use to accelerate deep learning in cloud. Amazon Machine Images (AMIs), designed for Amazon Linux and Ubuntu, come preconfigured to include TensorFlow and PyTorch. To develop advanced ML models at scale, you can validate models with millions supported virtual tests. You can speed up the installation and configuration process of AWS instances and accelerate experimentation and evaluation by using up-to-date frameworks, libraries, and Hugging Face Transformers. Advanced analytics, ML and deep learning capabilities are used to identify trends and make forecasts from disparate health data.
  • 19
    Kubeflow Reviews
    Kubeflow is a project that makes machine learning (ML), workflows on Kubernetes portable, scalable, and easy to deploy. Our goal is not create new services, but to make it easy to deploy the best-of-breed open source systems for ML to different infrastructures. Kubeflow can be run anywhere Kubernetes is running. Kubeflow offers a custom TensorFlow job operator that can be used to train your ML model. Kubeflow's job manager can handle distributed TensorFlow training jobs. You can configure the training controller to use GPUs or CPUs, and to adapt to different cluster sizes. Kubeflow provides services to create and manage interactive Jupyter Notebooks. You can adjust your notebook deployment and compute resources to meet your data science requirements. You can experiment with your workflows locally and then move them to the cloud when you are ready.
  • 20
    Google Cloud Deep Learning VM Image Reviews
    You can quickly provision a VM with everything you need for your deep learning project on Google Cloud. Deep Learning VM Image makes it simple and quick to create a VM image containing all the most popular AI frameworks for a Google Compute Engine instance. Compute Engine instances can be launched pre-installed in TensorFlow and PyTorch. Cloud GPU and Cloud TPU support can be easily added. Deep Learning VM Image supports all the most popular and current machine learning frameworks like TensorFlow, PyTorch, and more. Deep Learning VM Images can be used to accelerate model training and deployment. They are optimized with the most recent NVIDIA®, CUDA-X AI drivers and libraries, and the Intel®, Math Kernel Library. All the necessary frameworks, libraries and drivers are pre-installed, tested and approved for compatibility. Deep Learning VM Image provides seamless notebook experience with integrated JupyterLab support.
  • 21
    Keras Reviews
    Keras is an API that is designed for humans, not machines. Keras follows best practices to reduce cognitive load. It offers consistent and simple APIs, minimizes the number required for common use cases, provides clear and actionable error messages, as well as providing clear and actionable error messages. It also includes extensive documentation and developer guides. Keras is the most popular deep learning framework among top-5 Kaggle winning teams. Keras makes it easy to run experiments and allows you to test more ideas than your competitors, faster. This is how you win. Keras, built on top of TensorFlow2.0, is an industry-strength platform that can scale to large clusters (or entire TPU pods) of GPUs. It's possible and easy. TensorFlow's full deployment capabilities are available to you. Keras models can be exported to JavaScript to run in the browser or to TF Lite for embedded devices on iOS, Android and embedded devices. Keras models can also be served via a web API.
  • 22
    AWS Neuron Reviews
    It supports high-performance learning on AWS Trainium based Amazon Elastic Compute Cloud Trn1 instances. It supports low-latency and high-performance inference for model deployment on AWS Inferentia based Amazon EC2 Inf1 and AWS Inferentia2-based Amazon EC2 Inf2 instance. Neuron allows you to use popular frameworks such as TensorFlow or PyTorch and train and deploy machine-learning (ML) models using Amazon EC2 Trn1, inf1, and inf2 instances without requiring vendor-specific solutions. AWS Neuron SDK is natively integrated into PyTorch and TensorFlow, and supports Inferentia, Trainium, and other accelerators. This integration allows you to continue using your existing workflows within these popular frameworks, and get started by changing only a few lines. The Neuron SDK provides libraries for distributed model training such as Megatron LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 23
    luminoth Reviews
    Luminoth is an open-source toolkit for computer vision. We currently support object detection, but are working towards more. Luminoth is still an alpha-quality release. This means that the interfaces between the internal and external (such as command line) will likely change as the codebase matures. . You can install TensorFlow's GPU version with pip tensorflow.gpu or the CPU version with pip tensorflow. Luminoth can also install TensorFlow if you use pip install luminoth[tf]-gpu, depending on which version of TensorFlow.
  • 24
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 25
    HoneyHive Reviews
    AI engineering does not have to be a mystery. You can get full visibility using tools for tracing and evaluation, prompt management and more. HoneyHive is a platform for AI observability, evaluation and team collaboration that helps teams build reliable generative AI applications. It provides tools for evaluating and testing AI models and monitoring them, allowing engineers, product managers and domain experts to work together effectively. Measure the quality of large test suites in order to identify improvements and regressions at each iteration. Track usage, feedback and quality at a large scale to identify issues and drive continuous improvements. HoneyHive offers flexibility and scalability for diverse organizational needs. It supports integration with different model providers and frameworks. It is ideal for teams who want to ensure the performance and quality of their AI agents. It provides a unified platform that allows for evaluation, monitoring and prompt management.
  • 26
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.
  • 27
    IBM Watson Machine Learning Reviews
    IBM Watson Machine Learning, a full-service IBM Cloud offering, makes it easy for data scientists and developers to work together to integrate predictive capabilities into their applications. The Machine Learning service provides a set REST APIs that can be called from any programming language. This allows you to create applications that make better decisions, solve difficult problems, and improve user outcomes. Machine learning models management (continuous-learning system) and deployment (online batch, streaming, or online) are available. You can choose from any of the widely supported machine-learning frameworks: TensorFlow and Keras, Caffe or PyTorch. Spark MLlib, scikit Learn, xgboost, SPSS, Spark MLlib, Keras, Caffe and Keras. To manage your artifacts, you can use the Python client and command-line interface. The Watson Machine Learning REST API allows you to extend your application with artificial intelligence.
  • 28
    NVIDIA TensorRT Reviews
    NVIDIA TensorRT provides an ecosystem of APIs to support high-performance deep learning. It includes an inference runtime, model optimizations and a model optimizer that delivers low latency and high performance for production applications. TensorRT, built on the CUDA parallel programing model, optimizes neural networks trained on all major frameworks. It calibrates them for lower precision while maintaining high accuracy and deploys them across hyperscale data centres, workstations and laptops. It uses techniques such as layer and tensor-fusion, kernel tuning, and quantization on all types NVIDIA GPUs from edge devices to data centers. TensorRT is an open-source library that optimizes the inference performance for large language models.
  • 29
    Lucidworks Fusion Reviews
    Fusion transforms siloed data into unique insights for each user. Lucidworks Fusion allows customers to easily deploy AI-powered search and data discovery applications in a modern, containerized cloud-native architecture. Data scientists can interact with these applications by using existing machine learning models. They can also quickly create and deploy new models with popular tools such as Python ML and TensorFlow. It is easier and less risk to manage Fusion cloud deployments. Lucidworks has modernized Fusion using a cloud-native microservices architecture orchestrated and managed by Kubernetes. Fusion allows customers to dynamically manage their application resources according to usage ebbs, flows, and reduce the effort of deploying Fusion and upgrading it. Fusion also helps avoid unscheduled downtime or performance degradation. Fusion supports Python machine learning models natively. Fusion can integrate your custom ML models.
  • 30
    GPUonCLOUD Reviews
    Deep learning, 3D modelling, simulations and distributed analytics take days or even weeks. GPUonCLOUD’s dedicated GPU servers can do it in a matter hours. You may choose pre-configured or pre-built instances that feature GPUs with deep learning frameworks such as TensorFlow and PyTorch. MXNet and TensorRT are also available. OpenCV is a real-time computer-vision library that accelerates AI/ML model building. Some of the GPUs we have are the best for graphics workstations or multi-player accelerated games. Instant jumpstart frameworks improve the speed and agility in the AI/ML environment through effective and efficient management of the environment lifecycle.
  • 31
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 32
    IBM GPU Cloud Server Reviews
    We listened to our customers and have lowered the prices of our virtual and bare metal servers. Same power and flexibility. A graphics processing unit is the "extra brainpower" that a CPU lacks. IBM Cloud®, for your GPU needs, gives you direct access one of the most flexible server selection processes in the industry. It also integrates seamlessly with your IBM Cloud architecture and APIs, applications and a global distributed network of data centres. IBM Cloud Bare Metal Servers equipped with GPUs outperform AWS servers on 5 TensorFlow models. We offer virtual server GPUs as well as bare metal GPUs. Google Cloud only offers virtual servers instances. Alibaba Cloud offers virtual machines only with GPUs, just like Google Cloud.
  • 33
    Horovod Reviews
    Uber developed Horovod to make distributed deep-learning fast and easy to implement, reducing model training time from days and even weeks to minutes and hours. Horovod allows you to scale up an existing script so that it runs on hundreds of GPUs with just a few lines Python code. Horovod is available on-premises or as a cloud platform, including AWS Azure and Databricks. Horovod is also able to run on Apache Spark, allowing data processing and model-training to be combined into a single pipeline. Horovod can be configured to use the same infrastructure to train models using any framework. This makes it easy to switch from TensorFlow to PyTorch to MXNet and future frameworks, as machine learning tech stacks evolve.
  • 34
    LeaderGPU Reviews

    LeaderGPU

    LeaderGPU

    €0.14 per minute
    The increased demand for computing power is too much for conventional CPUs. GPU processors process data at speeds 100-200x faster than conventional CPUs. We offer servers that are designed specifically for machine learning or deep learning, and are equipped with unique features. Modern hardware based upon the NVIDIA®, GPU chipset. This has a high operating speed. The latest Tesla® V100 card with its high processing power. Optimized for deep-learning software, TensorFlow™, Caffe2, Torch, Theano, CNTK, MXNet™. Includes development tools for Python 2, Python 3 and C++. We do not charge extra fees for each service. Disk space and traffic are included in the price of the basic service package. Our servers can also be used to perform various tasks such as video processing, rendering etc. LeaderGPU®, customers can now access a graphical user interface via RDP.
  • 35
    Bayesforge Reviews

    Bayesforge

    Quantum Programming Studio

    Bayesforge™ is a Linux image that curates all the best open source software available for data scientists who need advanced analytical tools as well as quantum computing and computational math practitioners who want to work with QC frameworks. The image combines open source software such as D-Wave and Rigetti, IBM Quantum Experience, Google's new quantum computer language Cirq and other advanced QC Frameworks. Qubiter, our quantum compiler and fog modeling framework can be cross-compiled to all major architectures. The Jupyter WebUI makes all software accessible. Its modular architecture allows users to code in Python R and Octave.
  • 36
    Amazon EC2 Trn1 Instances Reviews
    Amazon Elastic Compute Cloud Trn1 instances powered by AWS Trainium are designed for high-performance deep-learning training of generative AI model, including large language models, latent diffusion models, and large language models. Trn1 instances can save you up to 50% on the cost of training compared to other Amazon EC2 instances. Trn1 instances can be used to train 100B+ parameters DL and generative AI model across a wide range of applications such as text summarizations, code generation and question answering, image generation and video generation, fraud detection, and recommendation. The AWS neuron SDK allows developers to train models on AWS trainsium (and deploy them on the AWS Inferentia chip). It integrates natively into frameworks like PyTorch and TensorFlow, so you can continue to use your existing code and workflows for training models on Trn1 instances.
  • 37
    Amazon EC2 Inf1 Instances Reviews
    Amazon EC2 Inf1 instances were designed to deliver high-performance, cost-effective machine-learning inference. Amazon EC2 Inf1 instances offer up to 2.3x higher throughput, and up to 70% less cost per inference compared with other Amazon EC2 instance. Inf1 instances are powered by up to 16 AWS inference accelerators, designed by AWS. They also feature Intel Xeon Scalable 2nd generation processors, and up to 100 Gbps of networking bandwidth, to support large-scale ML apps. These instances are perfect for deploying applications like search engines, recommendation system, computer vision and speech recognition, natural-language processing, personalization and fraud detection. Developers can deploy ML models to Inf1 instances by using the AWS Neuron SDK. This SDK integrates with popular ML Frameworks such as TensorFlow PyTorch and Apache MXNet.
  • 38
    Deep Lake Reviews

    Deep Lake

    activeloop

    $995 per month
    We've been working on Generative AI for 5 years. Deep Lake combines the power and flexibility of vector databases and data lakes to create enterprise-grade LLM-based solutions and refine them over time. Vector search does NOT resolve retrieval. You need a serverless search for multi-modal data including embeddings and metadata to solve this problem. You can filter, search, and more using the cloud, or your laptop. Visualize your data and embeddings to better understand them. Track and compare versions to improve your data and your model. OpenAI APIs are not the foundation of competitive businesses. Your data can be used to fine-tune LLMs. As models are being trained, data can be efficiently streamed from remote storage to GPUs. Deep Lake datasets can be visualized in your browser or Jupyter Notebook. Instantly retrieve different versions and materialize new datasets on the fly via queries. Stream them to PyTorch, TensorFlow, or Jupyter Notebook.
  • 39
    Apache Beam Reviews

    Apache Beam

    Apache Software Foundation

    This is the easiest way to perform batch and streaming data processing. For mission-critical production workloads, write once and run anywhere data processing. Beam can read your data from any supported source, whether it's on-prem and in the cloud. Beam executes your business logic in both batch and streaming scenarios. Beam converts the results of your data processing logic into the most popular data sinks. A single programming model that can be used for both streaming and batch use cases. This is a simplified version of the code for all members of your data and applications teams. Apache Beam is extensible. TensorFlow Extended, Apache Hop and other projects built on Apache Beam are examples of Apache Beam's extensibility. Execute pipelines in multiple execution environments (runners), allowing flexibility and avoiding lock-in. Open, community-based development and support are available to help you develop your application and meet your specific needs.
  • 40
    Amazon SageMaker Model Building Reviews
    Amazon SageMaker offers all the tools and libraries needed to build ML models. It allows you to iteratively test different algorithms and evaluate their accuracy to determine the best one for you. Amazon SageMaker allows you to choose from over 15 algorithms that have been optimized for SageMaker. You can also access over 150 pre-built models available from popular model zoos with just a few clicks. SageMaker offers a variety model-building tools, including RStudio and Amazon SageMaker Studio Notebooks. These allow you to run ML models on a small scale and view reports on their performance. This allows you to create high-quality working prototypes. Amazon SageMaker Studio Notebooks make it easier to build ML models and collaborate with your team. Amazon SageMaker Studio notebooks allow you to start working in seconds with Jupyter notebooks. Amazon SageMaker allows for one-click sharing of notebooks.
  • 41
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.
  • 42
    Amazon SageMaker JumpStart Reviews
    Amazon SageMaker JumpStart can help you speed up your machine learning (ML). SageMaker JumpStart gives you access to pre-trained foundation models, pre-trained algorithms, and built-in algorithms to help you with tasks like article summarization or image generation. You can also access prebuilt solutions to common problems. You can also share ML artifacts within your organization, including notebooks and ML models, to speed up ML model building. SageMaker JumpStart offers hundreds of pre-trained models from model hubs such as TensorFlow Hub and PyTorch Hub. SageMaker Python SDK allows you to access the built-in algorithms. The built-in algorithms can be used to perform common ML tasks such as data classifications (images, text, tabular), and sentiment analysis.
  • 43
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances powered by AWS Trainium2 are designed for high-performance deep-learning training of generative AI model, including large language models, diffusion models, and diffusion models. They can save up to 50% on the cost of training compared to comparable Amazon EC2 Instances. Trn2 instances can support up to 16 Trainium2 accelerations, delivering up to 3 petaflops FP16/BF16 computing power and 512GB of high bandwidth memory. Trn2 instances support up to 1600 Gbps second-generation Elastic Fabric Adapter network bandwidth. NeuronLink is a high-speed nonblocking interconnect that facilitates efficient data and models parallelism. They are deployed as EC2 UltraClusters and can scale up to 30,000 Trainium2 processors interconnected by a nonblocking, petabit-scale, network, delivering six exaflops in compute performance. The AWS neuron SDK integrates with popular machine-learning frameworks such as PyTorch or TensorFlow.
  • 44
    MinIO Reviews
    MinIO's high performance object storage suite is software-defined and allows customers to create cloud-native data infrastructures for machine learning, analytics, and application data workloads. MinIO object storage is fundamentally unique. It is 100% open-source and designed for performance and the S3 API. MinIO is ideal to host large, private cloud environments that have strict security requirements. It also delivers mission-critical availability across a wide range of workloads. MinIO is the fastest object storage server in the world. With READ/WRITE speeds up to 183 GB/s on standard hardware and 171GB/s on SSDs, object storage can be used as the primary storage tier for a variety of workloads, including Spark, Presto TensorFlow, Spark, TensorFlow, H2O.ai, and as a replacement for Hadoop HDFS. MinIO uses the hard-earned knowledge of web scalers to bring object storage a simple scaling model. MinIO scales with one cluster that can be federated to other MinIO clusters.
  • 45
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 46
    Groq Reviews
    Groq's mission is to set the standard in GenAI inference speeds, enabling real-time AI applications to be developed today. LPU, or Language Processing Unit, inference engines are a new end-to-end system that can provide the fastest inference possible for computationally intensive applications, including AI language applications. The LPU was designed to overcome two bottlenecks in LLMs: compute density and memory bandwidth. In terms of LLMs, an LPU has a greater computing capacity than both a GPU and a CPU. This reduces the time it takes to calculate each word, allowing text sequences to be generated faster. LPU's inference engine can also deliver orders of magnitude higher performance on LLMs than GPUs by eliminating external memory bottlenecks. Groq supports machine learning frameworks like PyTorch TensorFlow and ONNX.
  • 47
    Fabric for Deep Learning (FfDL) Reviews
    Deep learning frameworks like TensorFlow and PyTorch, Torch and Torch, Theano and MXNet have helped to increase the popularity of deep-learning by reducing the time and skills required to design, train and use deep learning models. Fabric for Deep Learning (pronounced "fiddle") is a consistent way of running these deep-learning frameworks on Kubernetes. FfDL uses microservices architecture to reduce the coupling between components. It isolates component failures and keeps each component as simple and stateless as possible. Each component can be developed, tested and deployed independently. FfDL leverages the power of Kubernetes to provide a resilient, scalable and fault-tolerant deep learning framework. The platform employs a distribution and orchestration layer to allow for learning from large amounts of data in a reasonable time across multiple compute nodes.
  • 48
    Azure Databricks Reviews
    Azure Databricks allows you to unlock insights from all your data, build artificial intelligence (AI), solutions, and autoscale your Apache Spark™. You can also collaborate on shared projects with other people in an interactive workspace. Azure Databricks supports Python and Scala, R and Java, as well data science frameworks such as TensorFlow, PyTorch and scikit-learn. Azure Databricks offers the latest version of Apache Spark and allows seamless integration with open-source libraries. You can quickly spin up clusters and build in an Apache Spark environment that is fully managed and available worldwide. Clusters can be set up, configured, fine-tuned, and monitored to ensure performance and reliability. To reduce total cost of ownership (TCO), take advantage of autoscaling or auto-termination.
  • 49
    Amazon Elastic Inference Reviews
    Amazon Elastic Inference allows for low-cost GPU-powered acceleration to Amazon EC2 instances and Sagemaker instances, or Amazon ECS tasks. This can reduce the cost of deep learning inference by up 75%. Amazon Elastic Inference supports TensorFlow and Apache MXNet models. Inference is the process by which a trained model makes predictions. Inference can account for as much as 90% of total operational expenses in deep learning applications for two reasons. First, standalone GPU instances are usually used for model training and not inference. Inference jobs typically process one input at a time and use a smaller amount of GPU compute. Training jobs can process hundreds of data samples simultaneously, but inference jobs only process one input in real-time. This makes standalone GPU-based inference expensive. However, standalone CPU instances aren't specialized for matrix operations and are therefore often too slow to perform deep learning inference.
  • 50
    AlxBlock Reviews

    AlxBlock

    AlxBlock

    $50 per month
    AIxBlock is an end-to-end blockchain-based platform for AI that harnesses unused computing resources of BTC miners, as well as all global consumer GPUs. Our platform's training method is a hybrid machine learning approach that allows simultaneous training on multiple nodes. We use the DeepSpeed-TED method, a three-dimensional hybrid parallel algorithm which integrates data, tensor and expert parallelism. This allows for the training of Mixture of Experts models (MoE) on base models that are 4 to 8x larger than the current state of the art. The platform will identify and add compatible computing resources from the computing marketplace to the existing cluster of training nodes, and distribute the ML model for unlimited computations. This process unfolds dynamically and automatically, culminating in decentralized supercomputers which facilitate AI success.