Best NVIDIA TensorRT Alternatives in 2025
Find the top alternatives to NVIDIA TensorRT currently available. Compare ratings, reviews, pricing, and features of NVIDIA TensorRT alternatives in 2025. Slashdot lists the best NVIDIA TensorRT alternatives on the market that offer competing products that are similar to NVIDIA TensorRT. Sort through NVIDIA TensorRT alternatives below to make the best choice for your needs
-
1
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
2
OpenVINO
Intel
FreeThe Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development. -
3
Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
-
4
TensorWave
TensorWave
TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology. -
5
Luminal
Luminal
Luminal is a high-performance machine-learning framework designed with an emphasis on speed, simplicity, and composability, which utilizes static graphs and compiler-driven optimization to effectively manage complex neural networks. By transforming models into a set of minimal "primops"—comprising only 12 fundamental operations—Luminal can then implement compiler passes that swap these with optimized kernels tailored for specific devices, facilitating efficient execution across GPUs and other hardware. The framework incorporates modules, which serve as the foundational components of networks equipped with a standardized forward API, as well as the GraphTensor interface, allowing for typed tensors and graphs to be defined and executed at compile time. Maintaining a deliberately compact and modifiable core, Luminal encourages extensibility through the integration of external compilers that cater to various datatypes, devices, training methods, and quantization techniques. A quick-start guide is available to assist users in cloning the repository, constructing a simple "Hello World" model, or executing larger models like LLaMA 3 with GPU capabilities, thereby making it easier for developers to harness its potential. With its versatile design, Luminal stands out as a powerful tool for both novice and experienced practitioners in machine learning. -
6
VLLM
VLLM
VLLM is an advanced library tailored for the efficient inference and deployment of Large Language Models (LLMs). Initially created at the Sky Computing Lab at UC Berkeley, it has grown into a collaborative initiative enriched by contributions from both academic and industry sectors. The library excels in providing exceptional serving throughput by effectively handling attention key and value memory through its innovative PagedAttention mechanism. It accommodates continuous batching of incoming requests and employs optimized CUDA kernels, integrating technologies like FlashAttention and FlashInfer to significantly improve the speed of model execution. Furthermore, VLLM supports various quantization methods, including GPTQ, AWQ, INT4, INT8, and FP8, and incorporates speculative decoding features. Users enjoy a seamless experience by integrating easily with popular Hugging Face models and benefit from a variety of decoding algorithms, such as parallel sampling and beam search. Additionally, VLLM is designed to be compatible with a wide range of hardware, including NVIDIA GPUs, AMD CPUs and GPUs, and Intel CPUs, ensuring flexibility and accessibility for developers across different platforms. This broad compatibility makes VLLM a versatile choice for those looking to implement LLMs efficiently in diverse environments. -
7
AWS Neuron
Amazon Web Services
It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions. -
8
NVIDIA DRIVE
NVIDIA
Software transforms a vehicle into a smart machine, and the NVIDIA DRIVE™ Software stack serves as an open platform that enables developers to effectively create and implement a wide range of advanced autonomous vehicle applications, such as perception, localization and mapping, planning and control, driver monitoring, and natural language processing. At the core of this software ecosystem lies DRIVE OS, recognized as the first operating system designed for safe accelerated computing. This system incorporates NvMedia for processing sensor inputs, NVIDIA CUDA® libraries to facilitate efficient parallel computing, and NVIDIA TensorRT™ for real-time artificial intelligence inference, alongside numerous tools and modules that provide access to hardware capabilities. The NVIDIA DriveWorks® SDK builds on DRIVE OS, offering essential middleware functions that are critical for the development of autonomous vehicles. These functions include a sensor abstraction layer (SAL) and various sensor plugins, a data recorder, vehicle I/O support, and a framework for deep neural networks (DNN), all of which are vital for enhancing the performance and reliability of autonomous systems. With these powerful resources, developers are better equipped to innovate and push the boundaries of what's possible in automated transportation. -
9
NVIDIA DGX Cloud Serverless Inference provides a cutting-edge, serverless AI inference framework designed to expedite AI advancements through automatic scaling, efficient GPU resource management, multi-cloud adaptability, and effortless scalability. This solution enables users to reduce instances to zero during idle times, thereby optimizing resource use and lowering expenses. Importantly, there are no additional charges incurred for cold-boot startup durations, as the system is engineered to keep these times to a minimum. The service is driven by NVIDIA Cloud Functions (NVCF), which includes extensive observability capabilities, allowing users to integrate their choice of monitoring tools, such as Splunk, for detailed visibility into their AI operations. Furthermore, NVCF supports versatile deployment methods for NIM microservices, granting the ability to utilize custom containers, models, and Helm charts, thus catering to diverse deployment preferences and enhancing user flexibility. This combination of features positions NVIDIA DGX Cloud Serverless Inference as a powerful tool for organizations seeking to optimize their AI inference processes.
-
10
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK serves as a robust software suite aimed at enhancing the performance of trained deep learning models for efficient inference on Qualcomm Cloud AI 100 accelerators. It accommodates a diverse array of AI frameworks like TensorFlow, PyTorch, and ONNX, which empowers developers to compile, optimize, and execute models with ease. Offering tools for onboarding, fine-tuning, and deploying models, the SDK streamlines the entire process from preparation to production rollout. In addition, it includes valuable resources such as model recipes, tutorials, and sample code to support developers in speeding up their AI projects. This ensures a seamless integration with existing infrastructures, promoting scalable and efficient AI inference solutions within cloud settings. By utilizing the Cloud AI SDK, developers are positioned to significantly boost the performance and effectiveness of their AI-driven applications, ultimately leading to more innovative solutions in the field. -
11
LiteRT
Google
FreeLiteRT, previously known as TensorFlow Lite, is an advanced runtime developed by Google that provides high-performance capabilities for artificial intelligence on devices. This platform empowers developers to implement machine learning models on multiple devices and microcontrollers with ease. Supporting models from prominent frameworks like TensorFlow, PyTorch, and JAX, LiteRT converts these models into the FlatBuffers format (.tflite) for optimal inference efficiency on devices. Among its notable features are minimal latency, improved privacy by handling data locally, smaller model and binary sizes, and effective power management. The runtime also provides SDKs in various programming languages, including Java/Kotlin, Swift, Objective-C, C++, and Python, making it easier to incorporate into a wide range of applications. To enhance performance on compatible devices, LiteRT utilizes hardware acceleration through delegates such as GPU and iOS Core ML. The upcoming LiteRT Next, which is currently in its alpha phase, promises to deliver a fresh set of APIs aimed at simplifying the process of on-device hardware acceleration, thereby pushing the boundaries of mobile AI capabilities even further. With these advancements, developers can expect more seamless integration and performance improvements in their applications. -
12
ThirdAI
ThirdAI
ThirdAI (pronounced /THərd ī/ Third eye) is a pioneering startup in the realm of artificial intelligence, focused on developing scalable and sustainable AI solutions. The ThirdAI accelerator specializes in creating hash-based processing algorithms for both training and inference processes within neural networks. This groundbreaking technology stems from a decade of advancements aimed at discovering efficient mathematical approaches that extend beyond traditional tensor methods in deep learning. Our innovative algorithms have proven that commodity x86 CPUs can outperform even the most powerful NVIDIA GPUs by a factor of 15 when training extensive neural networks. This revelation has challenged the widely held belief in the AI community that specialized processors, such as GPUs, are vastly superior to CPUs for neural network training. Not only does our innovation promise to enhance current AI training methods by utilizing more cost-effective CPUs, but it also has the potential to enable previously unmanageable AI training workloads on GPUs, opening up new avenues for research and application in the field. -
13
IREN Cloud
IREN
IREN’s AI Cloud is a cutting-edge GPU cloud infrastructure that utilizes NVIDIA's reference architecture along with a high-speed, non-blocking InfiniBand network capable of 3.2 TB/s, specifically engineered for demanding AI training and inference tasks through its bare-metal GPU clusters. This platform accommodates a variety of NVIDIA GPU models, providing ample RAM, vCPUs, and NVMe storage to meet diverse computational needs. Fully managed and vertically integrated by IREN, the service ensures clients benefit from operational flexibility, robust reliability, and comprehensive 24/7 in-house support. Users gain access to performance metrics monitoring, enabling them to optimize their GPU expenditures while maintaining secure and isolated environments through private networking and tenant separation. The platform empowers users to deploy their own data, models, and frameworks such as TensorFlow, PyTorch, and JAX, alongside container technologies like Docker and Apptainer, all while granting root access without any limitations. Additionally, it is finely tuned to accommodate the scaling requirements of complex applications, including the fine-tuning of extensive language models, ensuring efficient resource utilization and exceptional performance for sophisticated AI projects. -
14
NVIDIA Picasso
NVIDIA
NVIDIA Picasso is an innovative cloud platform designed for the creation of visual applications utilizing generative AI technology. This service allows businesses, software developers, and service providers to execute inference on their models, train NVIDIA's Edify foundation models with their unique data, or utilize pre-trained models to create images, videos, and 3D content based on text prompts. Fully optimized for GPUs, Picasso enhances the efficiency of training, optimization, and inference processes on the NVIDIA DGX Cloud infrastructure. Organizations and developers are empowered to either train NVIDIA’s Edify models using their proprietary datasets or jumpstart their projects with models that have already been trained in collaboration with prestigious partners. The platform features an expert denoising network capable of producing photorealistic 4K images, while its temporal layers and innovative video denoiser ensure the generation of high-fidelity videos that maintain temporal consistency. Additionally, a cutting-edge optimization framework allows for the creation of 3D objects and meshes that exhibit high-quality geometry. This comprehensive cloud service supports the development and deployment of generative AI-based applications across image, video, and 3D formats, making it an invaluable tool for modern creators. Through its robust capabilities, NVIDIA Picasso sets a new standard in the realm of visual content generation. -
15
NVIDIA Parabricks
NVIDIA
NVIDIA® Parabricks® stands out as the sole suite of genomic analysis applications that harnesses GPU acceleration to provide rapid and precise genome and exome analysis for various stakeholders, including sequencing centers, clinical teams, genomics researchers, and developers of high-throughput sequencing instruments. This innovative platform offers GPU-optimized versions of commonly utilized tools by computational biologists and bioinformaticians, leading to notably improved runtimes, enhanced workflow scalability, and reduced computing expenses. Spanning from FastQ files to Variant Call Format (VCF), NVIDIA Parabricks significantly boosts performance across diverse hardware setups featuring NVIDIA A100 Tensor Core GPUs. Researchers in genomics can benefit from accelerated processing throughout their entire analysis workflows, which includes stages such as alignment, sorting, and variant calling. With the deployment of additional GPUs, users can observe nearly linear scaling in computational speed when compared to traditional CPU-only systems, achieving acceleration rates of up to 107X. This remarkable efficiency makes NVIDIA Parabricks an essential tool for anyone involved in genomic analysis. -
16
Amazon EC2 Inf1 Instances
Amazon
$0.228 per hourAmazon EC2 Inf1 instances are specifically designed to provide efficient, high-performance machine learning inference at a competitive cost. They offer an impressive throughput that is up to 2.3 times greater and a cost that is up to 70% lower per inference compared to other EC2 offerings. Equipped with up to 16 AWS Inferentia chips—custom ML inference accelerators developed by AWS—these instances also incorporate 2nd generation Intel Xeon Scalable processors and boast networking bandwidth of up to 100 Gbps, making them suitable for large-scale machine learning applications. Inf1 instances are particularly well-suited for a variety of applications, including search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers have the advantage of deploying their ML models on Inf1 instances through the AWS Neuron SDK, which is compatible with widely-used ML frameworks such as TensorFlow, PyTorch, and Apache MXNet, enabling a smooth transition with minimal adjustments to existing code. This makes Inf1 instances not only powerful but also user-friendly for developers looking to optimize their machine learning workloads. The combination of advanced hardware and software support makes them a compelling choice for enterprises aiming to enhance their AI capabilities. -
17
NVIDIA DIGITS
NVIDIA DIGITS
The NVIDIA Deep Learning GPU Training System (DIGITS) empowers engineers and data scientists by making deep learning accessible and efficient. With DIGITS, users can swiftly train highly precise deep neural networks (DNNs) tailored for tasks like image classification, segmentation, and object detection. It streamlines essential deep learning processes, including data management, neural network design, multi-GPU training, real-time performance monitoring through advanced visualizations, and selecting optimal models for deployment from the results browser. The interactive nature of DIGITS allows data scientists to concentrate on model design and training instead of getting bogged down with programming and debugging. Users can train models interactively with TensorFlow while also visualizing the model architecture via TensorBoard. Furthermore, DIGITS supports the integration of custom plug-ins, facilitating the importation of specialized data formats such as DICOM, commonly utilized in medical imaging. This comprehensive approach ensures that engineers can maximize their productivity while leveraging advanced deep learning techniques. -
18
Groq
Groq
Groq aims to establish a benchmark for the speed of GenAI inference, facilitating the realization of real-time AI applications today. The newly developed LPU inference engine, which stands for Language Processing Unit, represents an innovative end-to-end processing system that ensures the quickest inference for demanding applications that involve a sequential aspect, particularly AI language models. Designed specifically to address the two primary bottlenecks faced by language models—compute density and memory bandwidth—the LPU surpasses both GPUs and CPUs in its computing capabilities for language processing tasks. This advancement significantly decreases the processing time for each word, which accelerates the generation of text sequences considerably. Moreover, by eliminating external memory constraints, the LPU inference engine achieves exponentially superior performance on language models compared to traditional GPUs. Groq's technology also seamlessly integrates with widely used machine learning frameworks like PyTorch, TensorFlow, and ONNX for inference purposes. Ultimately, Groq is poised to revolutionize the landscape of AI language applications by providing unprecedented inference speeds. -
19
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
-
20
Amazon EC2 P4 Instances
Amazon
$11.57 per hourAmazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness. -
21
DataCrunch
DataCrunch
$3.01 per hourFeaturing up to 8 NVidia® H100 80GB GPUs, each equipped with 16896 CUDA cores and 528 Tensor Cores, this represents NVidia®'s latest flagship technology, setting a high standard for AI performance. The system utilizes the SXM5 NVLINK module, providing a memory bandwidth of 2.6 Gbps and enabling peer-to-peer bandwidth of up to 900GB/s. Additionally, the fourth generation AMD Genoa processors support up to 384 threads with a boost clock reaching 3.7GHz. For NVLINK connectivity, the SXM4 module is employed, which boasts an impressive memory bandwidth exceeding 2TB/s and a P2P bandwidth of up to 600GB/s. The second generation AMD EPYC Rome processors can handle up to 192 threads with a boost clock of 3.3GHz. The designation 8A100.176V indicates the presence of 8 RTX A100 GPUs, complemented by 176 CPU core threads and virtualized capabilities. Notably, even though it has fewer tensor cores compared to the V100, the architecture allows for enhanced processing speeds in tensor operations. Moreover, the second generation AMD EPYC Rome is also available with configurations supporting up to 96 threads and a boost clock of 3.35GHz, further enhancing the system's performance capabilities. This combination of advanced hardware ensures optimal efficiency for demanding computational tasks. -
22
NVIDIA NIM
NVIDIA
Investigate the most recent advancements in optimized AI models, link AI agents to data using NVIDIA NeMo, and deploy solutions seamlessly with NVIDIA NIM microservices. NVIDIA NIM comprises user-friendly inference microservices that enable the implementation of foundation models across various cloud platforms or data centers, thereby maintaining data security while promoting efficient AI integration. Furthermore, NVIDIA AI offers access to the Deep Learning Institute (DLI), where individuals can receive technical training to develop valuable skills, gain practical experience, and acquire expert knowledge in AI, data science, and accelerated computing. AI models produce responses based on sophisticated algorithms and machine learning techniques; however, these outputs may sometimes be inaccurate, biased, harmful, or inappropriate. Engaging with this model comes with the understanding that you accept the associated risks of any potential harm stemming from its responses or outputs. As a precaution, refrain from uploading any sensitive information or personal data unless you have explicit permission, and be aware that your usage will be tracked for security monitoring. Remember, the evolving landscape of AI requires users to stay informed and vigilant about the implications of deploying such technologies. -
23
Skyportal
Skyportal
$2.40 per hourSkyportal is a cloud platform utilizing GPUs specifically designed for AI engineers, boasting a 50% reduction in cloud expenses while delivering 100% GPU performance. By providing an affordable GPU infrastructure tailored for machine learning tasks, it removes the uncertainty of fluctuating cloud costs and hidden charges. The platform features a smooth integration of Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, all finely tuned for Ubuntu 22.04 LTS and 24.04 LTS, enabling users to concentrate on innovation and scaling effortlessly. Users benefit from high-performance NVIDIA H100 and H200 GPUs, which are optimized for ML/AI tasks, alongside instant scalability and round-the-clock expert support from a knowledgeable team adept in ML workflows and optimization strategies. In addition, Skyportal's clear pricing model and absence of egress fees ensure predictable expenses for AI infrastructure. Users are encouraged to communicate their AI/ML project needs and ambitions, allowing them to deploy models within the infrastructure using familiar tools and frameworks while adjusting their infrastructure capacity as necessary. Ultimately, Skyportal empowers AI engineers to streamline their workflows effectively while managing costs efficiently. -
24
Xilinx
Xilinx
Xilinx's AI development platform for inference on its hardware includes a suite of optimized intellectual property (IP), tools, libraries, models, and example designs, all crafted to maximize efficiency and user-friendliness. This platform unlocks the capabilities of AI acceleration on Xilinx’s FPGAs and ACAPs, accommodating popular frameworks and the latest deep learning models for a wide array of tasks. It features an extensive collection of pre-optimized models that can be readily deployed on Xilinx devices, allowing users to quickly identify the most suitable model and initiate re-training for specific applications. Additionally, it offers a robust open-source quantizer that facilitates the quantization, calibration, and fine-tuning of both pruned and unpruned models. Users can also take advantage of the AI profiler, which performs a detailed layer-by-layer analysis to identify and resolve performance bottlenecks. Furthermore, the AI library provides open-source APIs in high-level C++ and Python, ensuring maximum portability across various environments, from edge devices to the cloud. Lastly, the efficient and scalable IP cores can be tailored to accommodate a diverse range of application requirements, making this platform a versatile solution for developers. -
25
NVIDIA Modulus
NVIDIA
NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency. -
26
NetApp AIPod
NetApp
NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market. -
27
MaiaOS
Zyphra Technologies
Zyphra is a tech company specializing in artificial intelligence, headquartered in Palo Alto and expanding its footprint in both Montreal and London. We are in the process of developing MaiaOS, a sophisticated multimodal agent system that leverages cutting-edge research in hybrid neural network architectures (SSM hybrids), long-term memory, and reinforcement learning techniques. It is our conviction that the future of artificial general intelligence (AGI) will hinge on a blend of cloud-based and on-device strategies, with a notable trend towards local inference capabilities. MaiaOS is engineered with a deployment framework that optimizes inference efficiency, facilitating real-time intelligence applications. Our talented AI and product teams hail from prestigious organizations such as Google DeepMind, Anthropic, StabilityAI, Qualcomm, Neuralink, Nvidia, and Apple, bringing a wealth of experience to our initiatives. With comprehensive knowledge in AI models, learning algorithms, and systems infrastructure, we prioritize enhancing inference efficiency and maximizing AI silicon performance. At Zyphra, our mission is to make cutting-edge AI systems accessible to a wider audience, fostering innovation and collaboration in the field. We are excited about the potential societal impacts of our technology as we move forward. -
28
FriendliAI
FriendliAI
$5.9 per hourFriendliAI serves as an advanced generative AI infrastructure platform that delivers rapid, efficient, and dependable inference solutions tailored for production settings. The platform is equipped with an array of tools and services aimed at refining the deployment and operation of large language models (LLMs) alongside various generative AI tasks on a large scale. Among its key features is Friendli Endpoints, which empowers users to create and implement custom generative AI models, thereby reducing GPU expenses and hastening AI inference processes. Additionally, it facilitates smooth integration with well-known open-source models available on the Hugging Face Hub, ensuring exceptionally fast and high-performance inference capabilities. FriendliAI incorporates state-of-the-art technologies, including Iteration Batching, the Friendli DNN Library, Friendli TCache, and Native Quantization, all of which lead to impressive cost reductions (ranging from 50% to 90%), a significant decrease in GPU demands (up to 6 times fewer GPUs), enhanced throughput (up to 10.7 times), and a marked decrease in latency (up to 6.2 times). With its innovative approach, FriendliAI positions itself as a key player in the evolving landscape of generative AI solutions. -
29
NetMind AI
NetMind AI
NetMind.AI is an innovative decentralized computing platform and AI ecosystem aimed at enhancing global AI development. It capitalizes on the untapped GPU resources available around the globe, making AI computing power affordable and accessible for individuals, businesses, and organizations of varying scales. The platform offers diverse services like GPU rentals, serverless inference, and a comprehensive AI ecosystem that includes data processing, model training, inference, and agent development. Users can take advantage of competitively priced GPU rentals and effortlessly deploy their models using on-demand serverless inference, along with accessing a broad range of open-source AI model APIs that deliver high-throughput and low-latency performance. Additionally, NetMind.AI allows contributors to integrate their idle GPUs into the network, earning NetMind Tokens (NMT) as a form of reward. These tokens are essential for facilitating transactions within the platform, enabling users to pay for various services, including training, fine-tuning, inference, and GPU rentals. Ultimately, NetMind.AI aims to democratize access to AI resources, fostering a vibrant community of contributors and users alike. -
30
Amazon EC2 P5 Instances
Amazon
Amazon's Elastic Compute Cloud (EC2) offers P5 instances that utilize NVIDIA H100 Tensor Core GPUs, alongside P5e and P5en instances featuring NVIDIA H200 Tensor Core GPUs, ensuring unmatched performance for deep learning and high-performance computing tasks. With these advanced instances, you can reduce the time to achieve results by as much as four times compared to earlier GPU-based EC2 offerings, while also cutting ML model training costs by up to 40%. This capability enables faster iteration on solutions, allowing businesses to reach the market more efficiently. P5, P5e, and P5en instances are ideal for training and deploying sophisticated large language models and diffusion models that drive the most intensive generative AI applications, which encompass areas like question-answering, code generation, video and image creation, and speech recognition. Furthermore, these instances can also support large-scale deployment of high-performance computing applications, facilitating advancements in fields such as pharmaceutical discovery, ultimately transforming how research and development are conducted in the industry. -
31
Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
-
32
NVIDIA AI Foundations
NVIDIA
Generative AI is transforming nearly every sector by opening up vast new avenues for knowledge and creative professionals to tackle some of the most pressing issues of our time. NVIDIA is at the forefront of this transformation, providing a robust array of cloud services, pre-trained foundation models, and leading-edge frameworks, along with optimized inference engines and APIs, to integrate intelligence into enterprise applications seamlessly. The NVIDIA AI Foundations suite offers cloud services that enhance generative AI capabilities at the enterprise level, allowing for tailored solutions in diverse fields such as text processing (NVIDIA NeMo™), visual content creation (NVIDIA Picasso), and biological research (NVIDIA BioNeMo™). By leveraging the power of NeMo, Picasso, and BioNeMo through NVIDIA DGX™ Cloud, organizations can fully realize the potential of generative AI. This technology is not just limited to creative endeavors; it also finds applications in generating marketing content, crafting narratives, translating languages globally, and synthesizing information from various sources, such as news articles and meeting notes. By harnessing these advanced tools, businesses can foster innovation and stay ahead in an ever-evolving digital landscape. -
33
Amazon Elastic Inference
Amazon
Amazon Elastic Inference provides an affordable way to enhance Amazon EC2 and Sagemaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference costs by as much as 75%. It is compatible with models built on TensorFlow, Apache MXNet, PyTorch, and ONNX. The term "inference" refers to the act of generating predictions from a trained model. In the realm of deep learning, inference can represent up to 90% of the total operational expenses, primarily for two reasons. Firstly, GPU instances are generally optimized for model training rather than inference, as training tasks can handle numerous data samples simultaneously, while inference typically involves processing one input at a time in real-time, resulting in minimal GPU usage. Consequently, relying solely on GPU instances for inference can lead to higher costs. Conversely, CPU instances lack the necessary specialization for matrix computations, making them inefficient and often too sluggish for deep learning inference tasks. This necessitates a solution like Elastic Inference, which optimally balances cost and performance in inference scenarios. -
34
NVIDIA Iray
NVIDIA
NVIDIA® Iray® is a user-friendly rendering technology based on physical principles that produces ultra-realistic images suitable for both interactive and batch rendering processes. By utilizing advanced features such as AI denoising, CUDA®, NVIDIA OptiX™, and Material Definition Language (MDL), Iray achieves outstanding performance and exceptional visual quality—significantly faster—when used with the cutting-edge NVIDIA RTX™ hardware. The most recent update to Iray includes RTX support, which incorporates dedicated ray-tracing hardware (RT Cores) and a sophisticated acceleration structure to facilitate real-time ray tracing in various graphics applications. In the 2019 version of the Iray SDK, all rendering modes have been optimized to take advantage of NVIDIA RTX technology. This integration, combined with AI denoising capabilities, allows creators to achieve photorealistic renders in mere seconds rather than taking several minutes. Moreover, leveraging Tensor Cores found in the latest NVIDIA hardware harnesses the benefits of deep learning for both final-frame and interactive photorealistic outputs, enhancing the overall rendering experience. As rendering technology advances, Iray continues to set new standards in the industry. -
35
Nebius
Nebius
$2.66/hour A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives. -
36
Together AI
Together AI
$0.0001 per 1k tokensTogether AI offers a cloud platform purpose-built for developers creating AI-native applications, providing optimized GPU infrastructure for training, fine-tuning, and inference at unprecedented scale. Its environment is engineered to remain stable even as customers push workloads to trillions of tokens, ensuring seamless reliability in production. By continuously improving inference runtime performance and GPU utilization, Together AI delivers a cost-effective foundation for companies building frontier-level AI systems. The platform features a rich model library including open-source, specialized, and multimodal models for chat, image generation, video creation, and coding tasks. Developers can replace closed APIs effortlessly through OpenAI-compatible endpoints. Innovations such as ATLAS, FlashAttention, Flash Decoding, and Mixture of Agents highlight Together AI’s strong research contributions. Instant GPU clusters allow teams to scale from prototypes to distributed workloads in minutes. AI-native companies rely on Together AI to break performance barriers and accelerate time to market. -
37
NLP Cloud
NLP Cloud
$29 per monthWe offer fast and precise AI models optimized for deployment in production environments. Our inference API is designed for high availability, utilizing cutting-edge NVIDIA GPUs to ensure optimal performance. We have curated a selection of top open-source natural language processing (NLP) models from the community, making them readily available for your use. You have the flexibility to fine-tune your own models, including GPT-J, or upload your proprietary models for seamless deployment in production. From your user-friendly dashboard, you can easily upload or train/fine-tune AI models, allowing you to integrate them into production immediately without the hassle of managing deployment factors such as memory usage, availability, or scalability. Moreover, you can upload an unlimited number of models and deploy them as needed, ensuring that you can continuously innovate and adapt to your evolving requirements. This provides a robust framework for leveraging AI technologies in your projects. -
38
RightNow AI
RightNow AI
$20 per monthRightNow AI is an innovative platform that leverages artificial intelligence to automatically analyze, identify inefficiencies, and enhance CUDA kernels for optimal performance. It is compatible with all leading NVIDIA architectures, such as Ampere, Hopper, Ada Lovelace, and Blackwell GPUs. Users can swiftly create optimized CUDA kernels by simply using natural language prompts, which negates the necessity for extensive knowledge of GPU intricacies. Additionally, its serverless GPU profiling feature allows users to uncover performance bottlenecks without the requirement of local hardware resources. By replacing outdated optimization tools with a more efficient solution, RightNow AI provides functionalities like inference-time scaling and comprehensive performance benchmarking. Renowned AI and high-performance computing teams globally, including Nvidia, Adobe, and Samsung, trust RightNow AI, which has showcased remarkable performance enhancements ranging from 2x to 20x compared to conventional implementations. The platform's ability to simplify complex processes makes it a game-changer in the realm of GPU optimization. -
39
DeePhi Quantization Tool
DeePhi Quantization Tool
$0.90 per hourThis innovative tool is designed for quantizing convolutional neural networks (CNNs). It allows for the transformation of both weights/biases and activations from 32-bit floating-point (FP32) to 8-bit integer (INT8) format, or even other bit depths. Utilizing this tool can greatly enhance inference performance and efficiency, all while preserving accuracy levels. It is compatible with various common layer types found in neural networks, such as convolution, pooling, fully-connected layers, and batch normalization, among others. Remarkably, the quantization process does not require the network to be retrained or the use of labeled datasets; only a single batch of images is sufficient. Depending on the neural network's size, the quantization can be completed in a matter of seconds to several minutes, facilitating quick updates to the model. Furthermore, this tool is specifically optimized for collaboration with DeePhi DPU and can generate the INT8 format model files necessary for DNNC integration. By streamlining the quantization process, developers can ensure their models remain efficient and robust in various applications. -
40
NVIDIA Confidential Computing safeguards data while it is actively being processed, ensuring the protection of AI models and workloads during execution by utilizing hardware-based trusted execution environments integrated within the NVIDIA Hopper and Blackwell architectures, as well as compatible platforms. This innovative solution allows businesses to implement AI training and inference seamlessly, whether on-site, in the cloud, or at edge locations, without requiring modifications to the model code, all while maintaining the confidentiality and integrity of both their data and models. Among its notable features are the zero-trust isolation that keeps workloads separate from the host operating system or hypervisor, device attestation that confirms only authorized NVIDIA hardware is executing the code, and comprehensive compatibility with shared or remote infrastructures, catering to ISVs, enterprises, and multi-tenant setups. By protecting sensitive AI models, inputs, weights, and inference processes, NVIDIA Confidential Computing facilitates the execution of high-performance AI applications without sacrificing security or efficiency. This capability empowers organizations to innovate confidently, knowing their proprietary information remains secure throughout the entire operational lifecycle.
-
41
TFLearn
TFLearn
TFlearn is a flexible and clear deep learning framework that operates on top of TensorFlow. Its primary aim is to offer a more user-friendly API for TensorFlow, which accelerates the experimentation process while ensuring complete compatibility and clarity with the underlying framework. The library provides an accessible high-level interface for developing deep neural networks, complete with tutorials and examples for guidance. It facilitates rapid prototyping through its modular design, which includes built-in neural network layers, regularizers, optimizers, and metrics. Users benefit from full transparency regarding TensorFlow, as all functions are tensor-based and can be utilized independently of TFLearn. Additionally, it features robust helper functions to assist in training any TensorFlow graph, accommodating multiple inputs, outputs, and optimization strategies. The graph visualization is user-friendly and aesthetically pleasing, offering insights into weights, gradients, activations, and more. Moreover, the high-level API supports a wide range of contemporary deep learning architectures, encompassing Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, and Generative networks, making it a versatile tool for researchers and developers alike. -
42
NVIDIA FLARE
NVIDIA
FreeNVIDIA FLARE, which stands for Federated Learning Application Runtime Environment, is a versatile, open-source SDK designed to enhance federated learning across various sectors, such as healthcare, finance, and the automotive industry. This platform enables secure and privacy-focused AI model training by allowing different parties to collaboratively develop models without the need to share sensitive raw data. Supporting a range of machine learning frameworks—including PyTorch, TensorFlow, RAPIDS, and XGBoost—FLARE seamlessly integrates into existing processes. Its modular architecture not only fosters customization but also ensures scalability, accommodating both horizontal and vertical federated learning methods. This SDK is particularly well-suited for applications that demand data privacy and adherence to regulations, including fields like medical imaging and financial analytics. Users can conveniently access and download FLARE through the NVIDIA NVFlare repository on GitHub and PyPi, making it readily available for implementation in diverse projects. Overall, FLARE represents a significant advancement in the pursuit of privacy-preserving AI solutions. -
43
TensorBoard
Tensorflow
FreeTensorBoard serves as a robust visualization platform within TensorFlow, specifically crafted to aid in the experimentation process of machine learning. It allows users to monitor and illustrate various metrics, such as loss and accuracy, while also offering insights into the model architecture through visual representations of its operations and layers. Users can observe the evolution of weights, biases, and other tensors via histograms over time, and it also allows for the projection of embeddings into a more manageable lower-dimensional space, along with the capability to display various forms of data, including images, text, and audio. Beyond these visualization features, TensorBoard includes profiling tools that help streamline and enhance the performance of TensorFlow applications. Collectively, these functionalities equip practitioners with essential tools for understanding, troubleshooting, and refining their TensorFlow projects, ultimately improving the efficiency of the machine learning process. In the realm of machine learning, accurate measurement is crucial for enhancement, and TensorBoard fulfills this need by supplying the necessary metrics and visual insights throughout the workflow. This platform not only tracks various experimental metrics but also facilitates the visualization of complex model structures and the dimensionality reduction of embeddings, reinforcing its importance in the machine learning toolkit. -
44
CUDA
NVIDIA
FreeCUDA® is a powerful parallel computing platform and programming framework created by NVIDIA, designed for executing general computing tasks on graphics processing units (GPUs). By utilizing CUDA, developers can significantly enhance the performance of their computing applications by leveraging the immense capabilities of GPUs. In applications that are GPU-accelerated, the sequential components of the workload are handled by the CPU, which excels in single-threaded tasks, while the more compute-heavy segments are processed simultaneously across thousands of GPU cores. When working with CUDA, programmers can use familiar languages such as C, C++, Fortran, Python, and MATLAB, incorporating parallelism through a concise set of specialized keywords. NVIDIA’s CUDA Toolkit equips developers with all the essential tools needed to create GPU-accelerated applications. This comprehensive toolkit encompasses GPU-accelerated libraries, an efficient compiler, various development tools, and the CUDA runtime, making it easier to optimize and deploy high-performance computing solutions. Additionally, the versatility of the toolkit allows for a wide range of applications, from scientific computing to graphics rendering, showcasing its adaptability in diverse fields. -
45
Nscale
Nscale
Nscale is a specialized hyperscaler designed specifically for artificial intelligence, delivering high-performance computing that is fine-tuned for training, fine-tuning, and demanding workloads. Our vertically integrated approach in Europe spans from data centers to software solutions, ensuring unmatched performance, efficiency, and sustainability in all our offerings. Users can tap into thousands of customizable GPUs through our advanced AI cloud platform, enabling significant cost reductions and revenue growth while optimizing AI workload management. The platform is crafted to facilitate a smooth transition from development to production, whether employing Nscale's internal AI/ML tools or integrating your own. Users can also explore the Nscale Marketplace, which provides access to a wide array of AI/ML tools and resources that support effective and scalable model creation and deployment. Additionally, our serverless architecture allows for effortless and scalable AI inference, eliminating the hassle of infrastructure management. This system dynamically adjusts to demand, guaranteeing low latency and economical inference for leading generative AI models, ultimately enhancing user experience and operational efficiency. With Nscale, organizations can focus on innovation while we handle the complexities of AI infrastructure.