Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
In recent years, high-performance computing has become a more accessible resource for a greater number of researchers within the scientific community than ever before. The combination of quality open-source software and affordable hardware has significantly contributed to the widespread adoption of Beowulf class clusters and clusters of workstations. Among various parallel computational approaches, message-passing has emerged as a particularly effective model. This paradigm is particularly well-suited for distributed memory architectures and is extensively utilized in today's most demanding scientific and engineering applications related to modeling, simulation, design, and signal processing. Nonetheless, the landscape of portable message-passing parallel programming was once fraught with challenges due to the numerous incompatible options developers faced. Thankfully, this situation has dramatically improved since the MPI Forum introduced its standard specification, which has streamlined the process for developers. As a result, researchers can now focus more on their scientific inquiries rather than grappling with programming complexities.
Description
Torch is a powerful framework for scientific computing that prioritizes GPU utilization and offers extensive support for various machine learning algorithms. Its user-friendly design is enhanced by LuaJIT, a fast scripting language, alongside a robust C/CUDA backbone that ensures efficiency. The primary aim of Torch is to provide both exceptional flexibility and speed in the development of scientific algorithms, all while maintaining simplicity in the process. With a rich array of community-driven packages, Torch caters to diverse fields such as machine learning, computer vision, signal processing, and more, effectively leveraging the resources of the Lua community. Central to Torch's functionality are its widely-used neural network and optimization libraries, which strike a balance between ease of use and flexibility for crafting intricate neural network architectures. Users can create complex graphs of neural networks and efficiently distribute the workload across multiple CPUs and GPUs, thereby optimizing performance. Overall, Torch serves as a versatile tool for researchers and developers aiming to advance their work in various computational domains.
API Access
Has API
API Access
Has API
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
MPI for Python
Website
mpi4py.readthedocs.io/en/stable/
Vendor Details
Company Name
Torch
Website
torch.ch/
Product Features
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization