Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

In recent years, high-performance computing has become a more accessible resource for a greater number of researchers within the scientific community than ever before. The combination of quality open-source software and affordable hardware has significantly contributed to the widespread adoption of Beowulf class clusters and clusters of workstations. Among various parallel computational approaches, message-passing has emerged as a particularly effective model. This paradigm is particularly well-suited for distributed memory architectures and is extensively utilized in today's most demanding scientific and engineering applications related to modeling, simulation, design, and signal processing. Nonetheless, the landscape of portable message-passing parallel programming was once fraught with challenges due to the numerous incompatible options developers faced. Thankfully, this situation has dramatically improved since the MPI Forum introduced its standard specification, which has streamlined the process for developers. As a result, researchers can now focus more on their scientific inquiries rather than grappling with programming complexities.

Description

Torch is a powerful framework for scientific computing that prioritizes GPU utilization and offers extensive support for various machine learning algorithms. Its user-friendly design is enhanced by LuaJIT, a fast scripting language, alongside a robust C/CUDA backbone that ensures efficiency. The primary aim of Torch is to provide both exceptional flexibility and speed in the development of scientific algorithms, all while maintaining simplicity in the process. With a rich array of community-driven packages, Torch caters to diverse fields such as machine learning, computer vision, signal processing, and more, effectively leveraging the resources of the Lua community. Central to Torch's functionality are its widely-used neural network and optimization libraries, which strike a balance between ease of use and flexibility for crafting intricate neural network architectures. Users can create complex graphs of neural networks and efficiently distribute the workload across multiple CPUs and GPUs, thereby optimizing performance. Overall, Torch serves as a versatile tool for researchers and developers aiming to advance their work in various computational domains.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

C
C++
Fortran
Hetman Internet Spy
LeaderGPU
NumPy
Python

Integrations

C
C++
Fortran
Hetman Internet Spy
LeaderGPU
NumPy
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

MPI for Python

Website

mpi4py.readthedocs.io/en/stable/

Vendor Details

Company Name

Torch

Website

torch.ch/

Product Features

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

GASP Reviews

GASP

AeroSoft

Alternatives

Neural Designer Reviews

Neural Designer

Artelnics