Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.

Description

On June 23, 2025, Microsoft unveiled Mu, an innovative 330-million-parameter encoder–decoder language model specifically crafted to enhance the agent experience within Windows environments by effectively translating natural language inquiries into function calls for Settings, all processed on-device via NPUs at a remarkable speed of over 100 tokens per second while ensuring impressive accuracy. By leveraging Phi Silica optimizations, Mu’s encoder–decoder design employs a fixed-length latent representation that significantly reduces both computational demands and memory usage, achieving a 47 percent reduction in first-token latency and a decoding speed that is 4.7 times greater on Qualcomm Hexagon NPUs when compared to other decoder-only models. Additionally, the model benefits from hardware-aware tuning techniques, which include a thoughtful 2/3–1/3 split of encoder and decoder parameters, shared weights for input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, allowing for swift inference rates exceeding 200 tokens per second on devices such as the Surface Laptop 7, along with sub-500 ms response times for settings-related queries. This combination of features positions Mu as a groundbreaking advancement in on-device language processing capabilities.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AI/ML API
AI4Chat
AiAssistWorks
Automi
Batteries Included
BrandRank.AI
Chatterbox
Cyte
Decopy AI
DeepEval
Fireworks AI
GMTech
HubSpot AI Search Grader
Kiin
Ollama
Pareto
Second State
SectorFlow
Verta
ZenML

Integrations

AI/ML API
AI4Chat
AiAssistWorks
Automi
Batteries Included
BrandRank.AI
Chatterbox
Cyte
Decopy AI
DeepEval
Fireworks AI
GMTech
HubSpot AI Search Grader
Kiin
Ollama
Pareto
Second State
SectorFlow
Verta
ZenML

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Meta

Founded

2004

Country

United States

Website

ai.meta.com/llama/

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

blogs.windows.com/windowsexperience/2025/06/23/introducing-mu-language-model-and-how-it-enabled-the-agent-in-windows-settings/

Product Features

Product Features

Alternatives

Aya Reviews

Aya

Cohere AI

Alternatives

CodeQwen Reviews

CodeQwen

Alibaba
Yi-Large Reviews

Yi-Large

01.AI
Vicuna Reviews

Vicuna

lmsys.org
Pixtral Large Reviews

Pixtral Large

Mistral AI
ChatGLM Reviews

ChatGLM

Zhipu AI
Falcon-7B Reviews

Falcon-7B

Technology Innovation Institute (TII)
Falcon-40B Reviews

Falcon-40B

Technology Innovation Institute (TII)