Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Keepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively.

Description

You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

PyTorch
Python
TensorFlow
Amazon EC2 Trn2 Instances
Amazon EKS
Amazon SageMaker
Amazon Web Services (AWS)
Anyscale
Apache Airflow
Azure Kubernetes Service (AKS)
Dask
Databricks Data Intelligence Platform
Flyte
Google Cloud Platform
Google Cloud Storage
Google Kubernetes Engine (GKE)
JSON
Kubernetes
Snowflake
scikit-learn

Integrations

PyTorch
Python
TensorFlow
Amazon EC2 Trn2 Instances
Amazon EKS
Amazon SageMaker
Amazon Web Services (AWS)
Anyscale
Apache Airflow
Azure Kubernetes Service (AKS)
Dask
Databricks Data Intelligence Platform
Flyte
Google Cloud Platform
Google Cloud Storage
Google Kubernetes Engine (GKE)
JSON
Kubernetes
Snowflake
scikit-learn

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Replicate

Country

United States

Website

keepsake.ai/

Vendor Details

Company Name

Anyscale

Founded

2019

Country

United States

Website

ray.io

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Version Control

Branch Creation / Deletion
Centralized Version History
Code Review
Code Version Management
Collaboration Tools
Compare / Merge Branches
Digital Asset / Binary File Storage
Isolated Code Branches
Option to Revert to Previous
Pull Requests
Roles / Permissions

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

TensorBoard Reviews

TensorBoard

Tensorflow

Alternatives

Keepsake Reviews

Keepsake

Replicate