What Integrates with Ray?

Find out what Ray integrations exist in 2025. Learn what software and services currently integrate with Ray, and sort them by reviews, cost, features, and more. Below is a list of products that Ray currently integrates with:

  • 1
    TensorFlow Reviews
    Open source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test.
  • 2
    Kubernetes Reviews
    Kubernetes (K8s), an open-source software that automates deployment, scaling and management of containerized apps, is available as an open-source project. It organizes containers that make up an app into logical units, which makes it easy to manage and discover. Kubernetes is based on 15 years of Google's experience in running production workloads. It also incorporates best-of-breed practices and ideas from the community. Kubernetes is built on the same principles that allow Google to run billions upon billions of containers per week. It can scale without increasing your operations team. Kubernetes flexibility allows you to deliver applications consistently and efficiently, no matter how complex they are, whether you're testing locally or working in a global enterprise. Kubernetes is an open-source project that allows you to use hybrid, on-premises, and public cloud infrastructures. This allows you to move workloads where they are most important.
  • 3
    Google Kubernetes Engine (GKE) Reviews
    Advanced apps can be run on a managed Kubernetes service that is secured and managed. GKE is an enterprise-grade platform that allows containerized applications to run, including stateful and non-stateful, Linux and Windows, AI and ML and complex web apps. It also supports APIs and backend services. You can leverage industry-first features such as four-way auto scaling and no stress management. Optimize GPU/TPU provisioning, make use of integrated developer tools, and get multicluster support from SREs. Single-click clusters allow you to quickly get started. You can leverage a high-availability control plan that includes multi-zonal clusters and regional clusters. Reduce operational overhead by using auto-repair, automatic-upgrade, or release channels. Secure by default, with vulnerability scanning of container images as well as data encryption. Integrated Cloud Monitoring with infrastructure, application and Kubernetes specific views. You can speed up app development without compromising security.
  • 4
    Python Reviews
    Definitive functions are the heart of extensible programming. Python supports keyword arguments, mandatory and optional arguments, as well as arbitrary argument lists. It doesn't matter if you are a beginner or an expert programmer, Python is easy to learn. Python is easy to learn, whether you are a beginner or an expert in other languages. These pages can be a helpful starting point to learn Python programming. The community hosts meetups and conferences to share code and much more. The documentation for Python will be helpful and the mailing lists will keep in touch. The Python Package Index (PyPI), hosts thousands of third-party Python modules. Both Python's standard library and the community-contributed modules allow for endless possibilities.
  • 5
    PyTorch Reviews
    TorchScript allows you to seamlessly switch between graph and eager modes. TorchServe accelerates the path to production. The torch-distributed backend allows for distributed training and performance optimization in production and research. PyTorch is supported by a rich ecosystem of libraries and tools that supports NLP, computer vision, and other areas. PyTorch is well-supported on major cloud platforms, allowing for frictionless development and easy scaling. Select your preferences, then run the install command. Stable is the most current supported and tested version of PyTorch. This version should be compatible with many users. Preview is available for those who want the latest, but not fully tested, and supported 1.10 builds that are generated every night. Please ensure you have met the prerequisites, such as numpy, depending on which package manager you use. Anaconda is our preferred package manager, as it installs all dependencies.
  • 6
    Amazon Web Services (AWS) Reviews
    Top Pick
    AWS offers a wide range of services, including database storage, compute power, content delivery, and other functionality. This allows you to build complex applications with greater flexibility, scalability, and reliability. Amazon Web Services (AWS), the world's largest and most widely used cloud platform, offers over 175 fully featured services from more than 150 data centers worldwide. AWS is used by millions of customers, including the fastest-growing startups, large enterprises, and top government agencies, to reduce costs, be more agile, and innovate faster. AWS offers more services and features than any other cloud provider, including infrastructure technologies such as storage and databases, and emerging technologies such as machine learning, artificial intelligence, data lakes, analytics, and the Internet of Things. It is now easier, cheaper, and faster to move your existing apps to the cloud.
  • 7
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 8
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    25 Ratings
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 9
    Union Cloud Reviews

    Union Cloud

    Union.ai

    Free (Flyte)
    Union.ai Benefits: - Accelerated Data Processing & ML: Union.ai significantly speeds up data processing and machine learning. - Built on Trusted Open-Source: Leverages the robust open-source project Flyteâ„¢, ensuring a reliable and tested foundation for your ML projects. - Kubernetes Efficiency: Harnesses the power and efficiency of Kubernetes along with enhanced observability and enterprise features. - Optimized Infrastructure: Facilitates easier collaboration among Data and ML teams on optimized infrastructures, boosting project velocity. - Breaks Down Silos: Tackles the challenges of distributed tooling and infrastructure by simplifying work-sharing across teams and environments with reusable tasks, versioned workflows, and an extensible plugin system. - Seamless Multi-Cloud Operations: Navigate the complexities of on-prem, hybrid, or multi-cloud setups with ease, ensuring consistent data handling, secure networking, and smooth service integrations. - Cost Optimization: Keeps a tight rein on your compute costs, tracks usage, and optimizes resource allocation even across distributed providers and instances, ensuring cost-effectiveness.
  • 10
    Amazon SageMaker Reviews
    Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility.
  • 11
    Flyte Reviews

    Flyte

    Union.ai

    Free
    The workflow automation platform that automates complex, mission-critical data processing and ML processes at large scale. Flyte makes it simple to create machine learning and data processing workflows that are concurrent, scalable, and manageable. Flyte is used for production at Lyft and Spotify, as well as Freenome. Flyte is used at Lyft for production model training and data processing. It has become the de facto platform for pricing, locations, ETA and mapping, as well as autonomous teams. Flyte manages more than 10,000 workflows at Lyft. This includes over 1,000,000 executions per month, 20,000,000 tasks, and 40,000,000 containers. Flyte has been battle-tested by Lyft and Spotify, as well as Freenome. It is completely open-source and has an Apache 2.0 license under Linux Foundation. There is also a cross-industry oversight committee. YAML is a useful tool for configuring machine learning and data workflows. However, it can be complicated and potentially error-prone.
  • 12
    Anyscale Reviews
    Ray's creators have created a fully-managed platform. The best way to create, scale, deploy, and maintain AI apps on Ray. You can accelerate development and deployment of any AI app, at any scale. Ray has everything you love, but without the DevOps burden. Let us manage Ray for you. Ray is hosted on our cloud infrastructure. This allows you to focus on what you do best: creating great products. Anyscale automatically scales your infrastructure to meet the dynamic demands from your workloads. It doesn't matter if you need to execute a production workflow according to a schedule (e.g. Retraining and updating a model with new data every week or running a highly scalable, low-latency production service (for example. Anyscale makes it easy for machine learning models to be served in production. Anyscale will automatically create a job cluster and run it until it succeeds.
  • 13
    LanceDB Reviews

    LanceDB

    LanceDB

    $16.03 per month
    LanceDB is an open-source database for AI that is developer-friendly. LanceDB provides the best foundation for AI applications. From hyperscalable vector searches and advanced retrieval of RAG data to streaming training datasets and interactive explorations of large AI datasets. Installs in seconds, and integrates seamlessly with your existing data and AI tools. LanceDB is an embedded database with native object storage integration (think SQLite, DuckDB), which can be deployed anywhere. It scales down to zero when it's not being used. LanceDB is a powerful tool for rapid prototyping and hyper-scale production. It delivers lightning-fast performance in search, analytics, training, and multimodal AI data. Leading AI companies have indexed petabytes and billions of vectors, as well as text, images, videos, and other data, at a fraction the cost of traditional vector databases. More than just embedding. Filter, select and stream training data straight from object storage in order to keep GPU utilization at a high level.
  • 14
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 15
    Amazon EKS Reviews
    Amazon Elastic Kubernetes Service is a fully managed Kubernetes services. EKS is trusted by customers such as Intel, Snap and Intuit. It also supports GoDaddy and Autodesk's mission-critical applications. EKS is reliable, secure, and scaleable. EKS is the best place for Kubernetes because of several reasons. AWS Fargate is serverless compute for containers that you can use to run your EKS clusters. Fargate eliminates the need for provisioning and managing servers. It allows you to specify and pay per application for resources and improves security by application isolation by design. EKS is also integrated with AWS Identity and Access Management, AWS CloudWatch, Auto Scaling Groups and AWS Identity and Access Management, IAM, and Amazon Virtual Private Cloud (VPC), allowing you to seamlessly monitor, scale, and load balance your applications.
  • 16
    Feast Reviews
    Your offline data can be used to make real-time predictions, without the need for custom pipelines. Data consistency is achieved between offline training and online prediction, eliminating train-serve bias. Standardize data engineering workflows within a consistent framework. Feast is used by teams to build their internal ML platforms. Feast doesn't require dedicated infrastructure to be deployed and managed. Feast reuses existing infrastructure and creates new resources as needed. You don't want a managed solution, and you are happy to manage your own implementation. Feast is supported by engineers who can help with its implementation and management. You are looking to build pipelines that convert raw data into features and integrate with another system. You have specific requirements and want to use an open-source solution.
  • 17
    io.net Reviews

    io.net

    io.net

    $0.34 per hour
    With just one click, you can access the global GPU resources. Instant access to a global network GPUs and CPUs. Spend much less on GPU computing than you would if you were to use the major public clouds, or buy your own servers. Engage with the cloud, customize your choice, and deploy in a matter seconds. You will be refunded if you terminate your cluster. You can also choose between cost and performance. With io.net you can turn your GPU into an income-generating machine. Our simple platform allows you rent out your GPU. Profitable, transparent and simple. Join the largest network of GPU Clusters in the world and earn sky-high returns. Earn much more with your GPU compute than even the best crypto mining pool. You will always know how much money you'll earn and when the job is complete, you'll be paid. The more you invest into your infrastructure, your returns will be higher.
  • 18
    Azure Kubernetes Service (AKS) Reviews
    Azure Kubernetes Services (AKS), a fully managed service that manages containerized applications, makes it easy to deploy and manage them. It provides serverless Kubernetes and integrated continuous integration/continuous delivery (CI/CD), as well as enterprise-grade security, governance, and governance. You can quickly build, deliver, scale and scale applications using confidence by bringing together your operations and development teams. You can easily provision additional capacity by using elastic provisioning without having to manage the infrastructure. KEDA allows for event-driven autoscaling. Azure Dev Spaces allows for faster end-to-end development, including integration with Visual Studio Code Kubernetes tools and Azure DevOps. Azure Policy allows for advanced identity and access management, as well as dynamic rules enforcement across multiple clusters. More regions are available than any other cloud provider.
  • 19
    MLflow Reviews
    MLflow is an open-source platform that manages the ML lifecycle. It includes experimentation, reproducibility and deployment. There is also a central model registry. MLflow currently has four components. Record and query experiments: data, code, config, results. Data science code can be packaged in a format that can be reproduced on any platform. Machine learning models can be deployed in a variety of environments. A central repository can store, annotate and discover models, as well as manage them. The MLflow Tracking component provides an API and UI to log parameters, code versions and metrics. It can also be used to visualize the results later. MLflow Tracking allows you to log and query experiments using Python REST, R API, Java API APIs, and REST. An MLflow Project is a way to package data science code in a reusable, reproducible manner. It is based primarily upon conventions. The Projects component also includes an API and command line tools to run projects.
  • 20
    Dask Reviews
    Dask is free and open-source. It was developed in collaboration with other community projects such as NumPy and pandas. Dask uses existing Python data structures and APIs to make it easy for users to switch between NumPy/pandas and scikit-learn-powered versions. Dask's schedulers can scale to thousands of node clusters, and its algorithms have been tested at some of the most powerful supercomputers around the world. You don't necessarily need a large cluster to get started. Dask ships schedulers that can be used on personal computers. Many people use Dask to scale computations on their laptops, using multiple cores and their disk for extra storage. Dask exposes lower level APIs that allow you to build custom systems for your own applications. This allows open-source leaders to parallelize their own packages, and business leaders to scale custom business logic.
  • 21
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances powered by AWS Trainium2 are designed for high-performance deep-learning training of generative AI model, including large language models, diffusion models, and diffusion models. They can save up to 50% on the cost of training compared to comparable Amazon EC2 Instances. Trn2 instances can support up to 16 Trainium2 accelerations, delivering up to 3 petaflops FP16/BF16 computing power and 512GB of high bandwidth memory. Trn2 instances support up to 1600 Gbps second-generation Elastic Fabric Adapter network bandwidth. NeuronLink is a high-speed nonblocking interconnect that facilitates efficient data and models parallelism. They are deployed as EC2 UltraClusters and can scale up to 30,000 Trainium2 processors interconnected by a nonblocking, petabit-scale, network, delivering six exaflops in compute performance. The AWS neuron SDK integrates with popular machine-learning frameworks such as PyTorch or TensorFlow.
  • 22
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-created platform that allows programmatically to schedule, author, and monitor workflows. Airflow is modular in architecture and uses a message queue for managing a large number of workers. Airflow can scale to infinity. Airflow pipelines can be defined in Python to allow for dynamic pipeline generation. This allows you to write code that dynamically creates pipelines. You can easily define your own operators, and extend libraries to suit your environment. Airflow pipelines can be both explicit and lean. The Jinja templating engine is used to create parametrization in the core of Airflow pipelines. No more XML or command-line black-magic! You can use standard Python features to create your workflows. This includes date time formats for scheduling, loops to dynamically generate task tasks, and loops for scheduling. This allows you to be flexible when creating your workflows.
  • Previous
  • You're on page 1
  • Next