Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Ffuf is a high-speed web fuzzer developed in Go that allows users to conduct scans on live hosts through various lessons and scenarios, which can be executed either locally via a Docker container or through an online hosted version. It offers virtual host discovery capabilities that operate independently of DNS records. To effectively utilize Ffuf, users need to provide a wordlist containing the inputs they want to test. You can specify one or multiple wordlists directly in the command line, and if you are using more than one, it's important to assign a custom keyword to manage them correctly. Ffuf processes the first entry of the initial wordlist against all entries in the subsequent wordlist, then moves on to the second entry of the first wordlist, repeating this process until all combinations have been tested. This method ensures thorough coverage of potential inputs, and there are numerous options available for further customizing the requests made during the fuzzing process. By leveraging these features, users can optimize their web vulnerability assessments effectively.
Description
LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.
API Access
Has API
API Access
Has API
Integrations
Atheris
C
C++
ClusterFuzz
Docker
Fuzzbuzz
Go
Google ClusterFuzz
JSON
Jazzer
Integrations
Atheris
C
C++
ClusterFuzz
Docker
Fuzzbuzz
Go
Google ClusterFuzz
JSON
Jazzer
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Ffuf
Website
github.com/ffuf/ffuf
Vendor Details
Company Name
LLVM Project
Founded
2003
Website
llvm.org/docs/LibFuzzer.html