Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Ffuf is a high-speed web fuzzer developed in Go that allows users to conduct scans on live hosts through various lessons and scenarios, which can be executed either locally via a Docker container or through an online hosted version. It offers virtual host discovery capabilities that operate independently of DNS records. To effectively utilize Ffuf, users need to provide a wordlist containing the inputs they want to test. You can specify one or multiple wordlists directly in the command line, and if you are using more than one, it's important to assign a custom keyword to manage them correctly. Ffuf processes the first entry of the initial wordlist against all entries in the subsequent wordlist, then moves on to the second entry of the first wordlist, repeating this process until all combinations have been tested. This method ensures thorough coverage of potential inputs, and there are numerous options available for further customizing the requests made during the fuzzing process. By leveraging these features, users can optimize their web vulnerability assessments effectively.
Description
ClusterFuzz serves as an expansive fuzzing framework designed to uncover security vulnerabilities and stability flaws in software applications. Employed by Google, it is utilized for testing all of its products and acts as the fuzzing engine for OSS-Fuzz. This infrastructure boasts a wide array of features that facilitate the seamless incorporation of fuzzing into the software development lifecycle. It offers fully automated processes for bug filing, triaging, and resolution across multiple issue tracking systems. The system supports a variety of coverage-guided fuzzing engines, optimizing results through ensemble fuzzing and diverse fuzzing methodologies. Additionally, it provides statistical insights for assessing fuzzer effectiveness and monitoring crash incidence rates. Users can navigate an intuitive web interface that simplifies the management of fuzzing activities and crash reviews. Furthermore, ClusterFuzz is compatible with various authentication systems via Firebase and includes capabilities for black-box fuzzing, minimizing test cases, and identifying regressions through bisection. In summary, this robust tool enhances software quality and security, making it invaluable for developers seeking to improve their applications.
API Access
Has API
API Access
Has API
Integrations
Docker
Firebase
Go
Honggfuzz
JSON
Jira
LibFuzzer
american fuzzy lop
Integrations
Docker
Firebase
Go
Honggfuzz
JSON
Jira
LibFuzzer
american fuzzy lop
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Ffuf
Website
github.com/ffuf/ffuf
Vendor Details
Company Name
Website
github.com/google/clusterfuzz