Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Sparrow serves as a research prototype and a demonstration project aimed at enhancing the training of dialogue agents to be more effective, accurate, and safe. By instilling these attributes within a generalized dialogue framework, Sparrow improves our insights into creating agents that are not only safer but also more beneficial, with the long-term ambition of contributing to the development of safer and more effective artificial general intelligence (AGI).
Currently, Sparrow is not available for public access.
The task of training conversational AI presents unique challenges, particularly due to the complexities involved in defining what constitutes a successful dialogue. To tackle this issue, we utilize a method of reinforcement learning (RL) that incorporates feedback from individuals, which helps us understand their preferences regarding the usefulness of different responses. By presenting participants with various model-generated answers to identical questions, we gather their opinions on which responses they find most appealing, thus refining our training process. This feedback loop is crucial for enhancing the performance and reliability of dialogue agents.
Description
Recent breakthroughs in natural language processing, comprehension, and generation have been greatly influenced by the development of large language models. This research presents a system that employs Ascend 910 AI processors and the MindSpore framework to train a language model exceeding one trillion parameters, specifically 1.085 trillion, referred to as PanGu-{\Sigma}. This model enhances the groundwork established by PanGu-{\alpha} by converting the conventional dense Transformer model into a sparse format through a method known as Random Routed Experts (RRE). Utilizing a substantial dataset of 329 billion tokens, the model was effectively trained using a strategy called Expert Computation and Storage Separation (ECSS), which resulted in a remarkable 6.3-fold improvement in training throughput through the use of heterogeneous computing. Through various experiments, it was found that PanGu-{\Sigma} achieves a new benchmark in zero-shot learning across multiple downstream tasks in Chinese NLP, showcasing its potential in advancing the field. This advancement signifies a major leap forward in the capabilities of language models, illustrating the impact of innovative training techniques and architectural modifications.
API Access
Has API
API Access
Has API
Screenshots View All
No images available
Integrations
PanGu Chat
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DeepMind
Founded
2010
Country
United States
Website
deepmind.com
Vendor Details
Company Name
Huawei
Founded
1987
Country
China
Website
huawei.com
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Chatbot
Call to Action
Context and Coherence
Human Takeover
Inline Media / Videos
Machine Learning
Natural Language Processing
Payment Integration
Prediction
Ready-made Templates
Reporting / Analytics
Sentiment Analysis
Social Media Integration
Natural Language Generation
Business Intelligence
CRM Data Analysis and Reports
Chatbot
Email Marketing
Financial Reporting
Multiple Language Support
SEO
Web Content
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization