Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Datos is a worldwide provider of clickstream data that specializes in licensing anonymized and privacy-compliant datasets, ensuring safety for its clients and partners in a challenging marketplace. With access to both desktop and mobile browsing clickstreams from millions of users globally, Datos delivers this information in user-friendly data feeds. The company's mission revolves around generating clickstream data founded on trust and aimed at achieving concrete outcomes. Esteemed organizations worldwide rely on Datos to furnish the insights necessary to navigate the complexities of the digital landscape with clarity. Among its offerings is the Datos Activity Feed, which grants a comprehensive view of the entire conversion funnel by monitoring every page visit and analyzing varied user behaviors. Additionally, the Datos Behavior Feed provides in-depth data regarding user trends, enhancing businesses' understanding of their audience. By continually evolving its products, Datos ensures that its clients remain equipped to adapt to the fast-paced changes in the digital realm.

Description

Word2Vec is a technique developed by Google researchers that employs a neural network to create word embeddings. This method converts words into continuous vector forms within a multi-dimensional space, effectively capturing semantic relationships derived from context. It primarily operates through two architectures: Skip-gram, which forecasts surrounding words based on a given target word, and Continuous Bag-of-Words (CBOW), which predicts a target word from its context. By utilizing extensive text corpora for training, Word2Vec produces embeddings that position similar words in proximity, facilitating various tasks such as determining semantic similarity, solving analogies, and clustering text. This model significantly contributed to the field of natural language processing by introducing innovative training strategies like hierarchical softmax and negative sampling. Although more advanced embedding models, including BERT and Transformer-based approaches, have since outperformed Word2Vec in terms of complexity and efficacy, it continues to serve as a crucial foundational technique in natural language processing and machine learning research. Its influence on the development of subsequent models cannot be overstated, as it laid the groundwork for understanding word relationships in deeper ways.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

No images available

Integrations

Gensim

Integrations

Gensim

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Datos

Founded

2019

Country

United States

Website

datos.live/

Vendor Details

Company Name

Google

Founded

1998

Country

United States

Website

code.google.com/archive/p/word2vec/

Product Features

Competitive Intelligence

Alerts/Notifications
Benchmarking
Competing Product Analysis
Keyword Tracking
Social Media Monitoring
Trend Analysis
Website Monitoring

Market Research

Benchmarking
Compensation Management
Data Management
Email / Online
Face-to-Face
Panel Management
Paper-Based
Phone-Based
Sample Management
Statistical Analysis
Survey Management

Product Features

Alternatives

Alternatives

Gensim Reviews

Gensim

Radim Řehůřek
GloVe Reviews

GloVe

Stanford NLP
KPI6 Reviews

KPI6

KPI6.com