Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
Description
Uncover the hidden order within your intricate data landscape and consistently know where to seek solutions. Datakin seamlessly tracks data lineage, presenting your entire data ecosystem through an engaging visual graph. This visualization effectively highlights the upstream and downstream connections associated with each dataset. The Duration tab provides an overview of a job’s performance in a Gantt-style chart, complemented by its upstream dependencies, which simplifies the identification of potential bottlenecks. When it's essential to determine the precise moment a breaking change occurs, the Compare tab allows you to observe how your jobs and datasets have evolved between different runs. Occasionally, jobs that complete successfully may yield poor output. The Quality tab reveals crucial data quality metrics and their fluctuations over time, making anomalies starkly apparent. By facilitating the swift identification of root causes for issues, Datakin also plays a vital role in preventing future complications from arising. This proactive approach ensures that your data remains reliable and efficient in supporting your business needs.
API Access
Has API
API Access
Has API
Integrations
Amazon Redshift
Apache Airflow
Google Cloud BigQuery
PostgreSQL
Snowflake
Amazon S3
Apache Spark
Astro
Azure Data Factory
Databricks Data Intelligence Platform
Integrations
Amazon Redshift
Apache Airflow
Google Cloud BigQuery
PostgreSQL
Snowflake
Amazon S3
Apache Spark
Astro
Azure Data Factory
Databricks Data Intelligence Platform
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$2 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/databand
Vendor Details
Company Name
Datakin
Founded
2019
Country
United States
Website
datakin.com
Product Features
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Data Quality
Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management
Data Visualization
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
Product Features
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View