Best IBM Databand Alternatives in 2025
Find the top alternatives to IBM Databand currently available. Compare ratings, reviews, pricing, and features of IBM Databand alternatives in 2025. Slashdot lists the best IBM Databand alternatives on the market that offer competing products that are similar to IBM Databand. Sort through IBM Databand alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
975 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
dbt
dbt Labs
207 Ratingsdbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use. With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations. -
4
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
5
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
6
Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
-
7
Immuta
Immuta
Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals. -
8
Minitab Connect
Minitab
The most accurate, complete, and timely data provides the best insight. Minitab Connect empowers data users across the enterprise with self service tools to transform diverse data into a network of data pipelines that feed analytics initiatives, foster collaboration and foster organizational-wide collaboration. Users can seamlessly combine and explore data from various sources, including databases, on-premise and cloud apps, unstructured data and spreadsheets. Automated workflows make data integration faster and provide powerful data preparation tools that allow for transformative insights. Data integration tools that are intuitive and flexible allow users to connect and blend data from multiple sources such as data warehouses, IoT devices and cloud storage. -
9
Datameer
Datameer
Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool. -
10
Fivetran
Fivetran
Fivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs. -
11
Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
-
12
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
13
Kylo
Teradata
Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations. -
14
Aggua
Aggua
Aggua serves as an augmented AI platform for data fabric that empowers both data and business teams to access their information, fostering trust while providing actionable data insights, ultimately leading to more comprehensive, data-driven decision-making. Rather than being left in the dark about the intricacies of your organization's data stack, you can quickly gain clarity with just a few clicks. This platform offers insights into data costs, lineage, and documentation without disrupting your data engineer’s busy schedule. Instead of investing excessive time on identifying how a change in data type might impact your data pipelines, tables, and overall infrastructure, automated lineage allows data architects and engineers to focus on implementing changes rather than sifting through logs and DAGs. As a result, teams can work more efficiently and effectively, leading to faster project completions and improved operational outcomes. -
15
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
16
In a developer-friendly visual editor, you can design, debug, run, and troubleshoot data jobflows and data transformations. You can orchestrate data tasks that require a specific sequence and organize multiple systems using the transparency of visual workflows. Easy deployment of data workloads into an enterprise runtime environment. Cloud or on-premise. Data can be made available to applications, people, and storage through a single platform. You can manage all your data workloads and related processes from one platform. No task is too difficult. CloverDX was built on years of experience in large enterprise projects. Open architecture that is user-friendly and flexible allows you to package and hide complexity for developers. You can manage the entire lifecycle for a data pipeline, from design, deployment, evolution, and testing. Our in-house customer success teams will help you get things done quickly.
-
17
Astro by Astronomer
Astronomer
Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration. -
18
Sentrana
Sentrana
Whether your data exists in isolated environments or is being produced at the edge, Sentrana offers you the versatility to establish AI and data engineering pipelines wherever your information resides. Furthermore, you can easily share your AI, data, and pipelines with anyone, regardless of their location. With Sentrana, you gain unparalleled agility to transition seamlessly between various computing environments, all while ensuring that your data and projects automatically replicate to your desired destinations. The platform features an extensive collection of components that allow you to craft personalized AI and data engineering pipelines. You can quickly assemble and evaluate numerous pipeline configurations to develop the AI solutions you require. Transforming your data into AI becomes a straightforward task, incurring minimal effort and expense. As Sentrana operates as an open platform, you have immediate access to innovative AI components that are continually being developed. Moreover, Sentrana converts the pipelines and AI models you build into reusable blocks, enabling any member of your team to integrate them into their own projects with ease. This collaborative capability not only enhances productivity but also fosters creativity across your organization. -
19
Decube
Decube
Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements. -
20
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
21
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
22
datuum.ai
Datuum
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes. -
23
Verodat
Verodat
Verodat, a SaaS-platform, gathers, prepares and enriches your business data, then connects it to AI Analytics tools. For results you can trust. Verodat automates data cleansing & consolidates data into a clean, trustworthy data layer to feed downstream reporting. Manages data requests for suppliers. Monitors data workflows to identify bottlenecks and resolve issues. The audit trail is generated to prove quality assurance for each data row. Validation & governance can be customized to your organization. Data preparation time is reduced by 60% allowing analysts to focus more on insights. The central KPI Dashboard provides key metrics about your data pipeline. This allows you to identify bottlenecks and resolve issues, as well as improve performance. The flexible rules engine allows you to create validation and testing that suits your organization's requirements. It's easy to integrate your existing tools with the out-of-the box connections to Snowflake and Azure. -
24
Trifacta
Trifacta
Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time. -
25
DQOps
DQOps
$499 per monthDQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code. -
26
Privacera
Privacera
Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system. -
27
Y42
Datos-Intelligence GmbH
Y42 is the first fully managed Modern DataOps Cloud for production-ready data pipelines on top of Google BigQuery and Snowflake. -
28
TensorStax
TensorStax
TensorStax is an advanced platform leveraging artificial intelligence to streamline data engineering activities, allowing organizations to effectively oversee their data pipelines, execute database migrations, and handle ETL/ELT processes along with data ingestion in cloud environments. The platform's autonomous agents work in harmony with popular tools such as Airflow and dbt, which enhances the development of comprehensive data pipelines and proactively identifies potential issues to reduce downtime. By operating within a company's Virtual Private Cloud (VPC), TensorStax guarantees the protection and confidentiality of sensitive data. With the automation of intricate data workflows, teams can redirect their efforts towards strategic analysis and informed decision-making. This not only increases productivity but also fosters innovation within data-driven projects. -
29
Prophecy
Prophecy
$299 per monthProphecy expands accessibility for a wider range of users, including visual ETL developers and data analysts, by allowing them to easily create pipelines through a user-friendly point-and-click interface combined with a few SQL expressions. While utilizing the Low-Code designer to construct workflows, you simultaneously generate high-quality, easily readable code for Spark and Airflow, which is then seamlessly integrated into your Git repository. The platform comes equipped with a gem builder, enabling rapid development and deployment of custom frameworks, such as those for data quality, encryption, and additional sources and targets that enhance the existing capabilities. Furthermore, Prophecy ensures that best practices and essential infrastructure are offered as managed services, simplifying your daily operations and overall experience. With Prophecy, you can achieve high-performance workflows that leverage the cloud's scalability and performance capabilities, ensuring that your projects run efficiently and effectively. This powerful combination of features makes it an invaluable tool for modern data workflows. -
30
K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.
-
31
DataGalaxy
DataGalaxy
DataGalaxy is redefining how organizations govern and activate their data through a single, collaborative platform built for both business and technical teams. Its data and analytics governance solution provides the visibility, control, and alignment needed to transform data into a true business asset. The platform unites automated data cataloging, AI-driven lineage, and value-based prioritization to ensure every initiative is intentional and measurable. With features like the strategy cockpit and value tracking center, organizations can connect business objectives to actionable data outcomes and monitor ROI in real time. Over 70 native connectors integrate seamlessly with tools like Snowflake, Azure Synapse, Databricks, Power BI, and HubSpot, breaking down data silos across hybrid environments. DataGalaxy also embeds AI-powered assistants and compliance automation for frameworks like GDPR, HIPAA, and SOC 2, making governance intuitive and secure. Trusted by global enterprises including Airbus and Bank of China, the platform is both scalable and enterprise-ready. By blending data discovery, collaboration, and security, DataGalaxy helps organizations move from reactive governance to proactive value creation. -
32
Decodable
Decodable
$0.20 per task per hourSay goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis. -
33
Datakin
Datakin
$2 per monthUncover the hidden order within your intricate data landscape and consistently know where to seek solutions. Datakin seamlessly tracks data lineage, presenting your entire data ecosystem through an engaging visual graph. This visualization effectively highlights the upstream and downstream connections associated with each dataset. The Duration tab provides an overview of a job’s performance in a Gantt-style chart, complemented by its upstream dependencies, which simplifies the identification of potential bottlenecks. When it's essential to determine the precise moment a breaking change occurs, the Compare tab allows you to observe how your jobs and datasets have evolved between different runs. Occasionally, jobs that complete successfully may yield poor output. The Quality tab reveals crucial data quality metrics and their fluctuations over time, making anomalies starkly apparent. By facilitating the swift identification of root causes for issues, Datakin also plays a vital role in preventing future complications from arising. This proactive approach ensures that your data remains reliable and efficient in supporting your business needs. -
34
Visokio creates Omniscope Evo, a complete and extensible BI tool for data processing, analysis, and reporting. Smart experience on any device. You can start with any data, any format, load, edit, combine, transform it while visually exploring it. You can extract insights through ML algorithms and automate your data workflows. Omniscope is a powerful BI tool that can be used on any device. It also has a responsive UX and is mobile-friendly. You can also augment data workflows using Python / R scripts or enhance reports with any JS visualisation. Omniscope is the complete solution for data managers, scientists, analysts, and data managers. It can be used to visualize data, analyze data, and visualise it.
-
35
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
36
Ardent
Ardent
FreeArdent (available at tryardent.com) is a cutting-edge platform for AI data engineering that simplifies the building, maintenance, and scaling of data pipelines with minimal human input. Users can simply issue commands in natural language, while the system autonomously manages implementation, infers schemas, tracks lineage, and resolves errors. With its preconfigured ingestors, Ardent enables seamless connections to various data sources, including warehouses, orchestration systems, and databases, typically within 30 minutes. Additionally, it provides automated debugging capabilities by accessing web resources and documentation, having been trained on countless real engineering tasks to effectively address complex pipeline challenges without any manual intervention. Designed for production environments, Ardent adeptly manages numerous tables and pipelines at scale, executes parallel jobs, initiates self-healing workflows, and ensures data quality through monitoring, all while facilitating operations via APIs or a user interface. This unique approach not only enhances efficiency but also empowers teams to focus on strategic decision-making rather than routine technical tasks. -
37
rudol
rudol
$0You can unify your data catalog, reduce communication overhead, and enable quality control for any employee of your company without having to deploy or install anything. Rudol is a data platform that helps companies understand all data sources, regardless of where they are from. It reduces communication in reporting processes and urgencies and allows data quality diagnosis and issue prevention for all company members. Each organization can add data sources from rudol's growing list of providers and BI tools that have a standardized structure. This includes MySQL, PostgreSQL. Redshift. Snowflake. Kafka. S3*. BigQuery*. MongoDB*. Tableau*. PowerBI*. Looker* (*in development). No matter where the data comes from, anyone can easily understand where it is stored, read its documentation, and contact data owners via our integrations. -
38
Amazon MWAA
Amazon
$0.49 per hourAmazon Managed Workflows for Apache Airflow (MWAA) is a service that simplifies the orchestration of Apache Airflow, allowing users to efficiently establish and manage comprehensive data pipelines in the cloud at scale. Apache Airflow itself is an open-source platform designed for the programmatic creation, scheduling, and oversight of workflows, which are sequences of various processes and tasks. By utilizing Managed Workflows, users can leverage Airflow and Python to design workflows while eliminating the need to handle the complexities of the underlying infrastructure, ensuring scalability, availability, and security. This service adapts its workflow execution capabilities automatically to align with user demands and incorporates AWS security features, facilitating swift and secure data access. Overall, MWAA empowers organizations to focus on their data processes without the burden of infrastructure management. -
39
Innodata
Innodata
We make data for the world's most valuable companies. Innodata solves your most difficult data engineering problems using artificial intelligence and human expertise. Innodata offers the services and solutions that you need to harness digital information at scale and drive digital disruption within your industry. We secure and efficiently collect and label sensitive data. This provides ground truth that is close to 100% for AI and ML models. Our API is simple to use and ingests unstructured data, such as contracts and medical records, and generates structured XML that conforms to schemas for downstream applications and analytics. We make sure that mission-critical databases are always accurate and up-to-date. -
40
Informatica Data Engineering
Informatica
Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence. -
41
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
42
Datactics
Datactics
Utilize the drag-and-drop rules studio to profile, cleanse, match, and eliminate duplicate data effortlessly. The no-code user interface enables subject matter experts to harness the tool without needing programming skills, empowering them to manage data effectively. By integrating AI and machine learning into your current data management workflows, you can minimize manual tasks and enhance accuracy, while ensuring complete transparency on automated decisions through a human-in-the-loop approach. Our award-winning data quality and matching features cater to various industries, and our self-service solutions can be configured quickly, often within weeks, with the support of specialized Datactics engineers. With Datactics, you can efficiently assess data against regulatory and industry standards, remedy breaches in bulk, and seamlessly integrate with reporting tools, all while providing comprehensive visibility and an audit trail for Chief Risk Officers. Furthermore, enhance your data matching capabilities by incorporating them into Legal Entity Masters to support Client Lifecycle Management, ensuring a robust and compliant data strategy. This comprehensive approach not only streamlines operations but also fosters informed decision-making across your organization. -
43
IBM Manta Data Lineage serves as a robust data lineage solution designed to enhance the transparency of data pipelines, enabling organizations to verify the accuracy of data throughout their models and systems. As companies weave AI into their operations and face increasing data complexity, the significance of data quality, provenance, and lineage continues to rise. Notably, IBM’s 2023 CEO study identified concerns regarding data lineage as the primary obstacle to the adoption of generative AI. To address these challenges, IBM provides an automated data lineage platform that effectively scans applications to create a detailed map of all data flows. This information is presented through an intuitive user interface (UI) and various other channels, catering to both technical experts and non-technical stakeholders. With IBM Manta Data Lineage, data operations teams gain extensive visibility and control over their data pipelines, enhancing their ability to manage data effectively. By deepening your understanding and utilization of dynamic metadata, you can guarantee that data is handled with precision and efficiency across intricate systems. This comprehensive approach not only mitigates risks but also fosters a culture of data-driven decision-making within organizations.
-
44
PurpleCube
PurpleCube
Experience an enterprise-level architecture and a cloud data platform powered by Snowflake® that enables secure storage and utilization of your data in the cloud. With integrated ETL and an intuitive drag-and-drop visual workflow designer, you can easily connect, clean, and transform data from over 250 sources. Harness cutting-edge Search and AI technology to quickly generate insights and actionable analytics from your data within seconds. Utilize our advanced AI/ML environments to create, refine, and deploy your predictive analytics and forecasting models. Take your data capabilities further with our comprehensive AI/ML frameworks, allowing you to design, train, and implement AI models through the PurpleCube Data Science module. Additionally, construct engaging BI visualizations with PurpleCube Analytics, explore your data using natural language searches, and benefit from AI-driven insights and intelligent recommendations that reveal answers to questions you may not have considered. This holistic approach ensures that you are equipped to make data-driven decisions with confidence and clarity. -
45
Validio
Validio
Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.