Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.

Description

Imageio is a versatile Python library that simplifies the process of reading and writing various types of image data, such as animated images, volumetric data, and scientific formats. It is designed to be cross-platform, compatible with Python versions 3.5 and later, and installation is straightforward. Since Imageio is developed entirely in Python, users can expect a seamless setup. It supports Python 3.5+ and is also functional on Pypy. The library relies on Numpy and Pillow for its operations, and for certain image formats, additional libraries or executables like ffmpeg may be required, which Imageio assists users in acquiring. In case of issues, understanding where to look for potential problems is crucial. This overview aims to provide insights into the workings of Imageio, enabling users to identify possible points of failure. By familiarizing yourself with these functionalities, you can enhance your troubleshooting skills when using the library.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Python
Google Maps
JavaScript
NumPy
Pillow

Integrations

Python
Google Maps
JavaScript
NumPy
Pillow

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Bokeh

Website

bokeh.org

Vendor Details

Company Name

imageio

Website

imageio.readthedocs.io/en/stable/

Product Features

Product Features

Alternatives

Alternatives

JDeli Reviews

JDeli

IDR Solutions
Plotly Dash Reviews

Plotly Dash

Plotly