Best imageio Alternatives in 2026

Find the top alternatives to imageio currently available. Compare ratings, reviews, pricing, and features of imageio alternatives in 2026. Slashdot lists the best imageio alternatives on the market that offer competing products that are similar to imageio. Sort through imageio alternatives below to make the best choice for your needs

  • 1
    broot Reviews
    The ROOT data analysis framework is widely utilized in High Energy Physics (HEP) and features its own file output format (.root). It seamlessly integrates with software developed in C++, while for Python users, there is an interface called pyROOT. However, pyROOT has compatibility issues with python3.4. To address this, broot is a compact library designed to transform data stored in Python's numpy ndarrays into ROOT files, structuring them with a branch for each array. This library aims to offer a standardized approach for exporting Python numpy data structures into ROOT files. Furthermore, it is designed to be portable and compatible with both Python2 and Python3, as well as ROOT versions 5 and 6, without necessitating changes to the ROOT components themselves—only a standard installation is needed. Users should find that installing the library requires minimal effort, as they only need to compile the library once or choose to install it as a Python package, making it a convenient tool for data analysis. Additionally, this ease of use encourages more researchers to adopt ROOT in their workflows.
  • 2
    JDeli Reviews

    JDeli

    IDR Solutions

    $1600 per year
    JDeli can read and write images in HEIC format. It also provides a complete HEIC conversion between HEIC file formats and many other image file formats. JDeli can convert the image in one step. You can also read and write the HEIC file separately if you need to process the image using Java. Threading can improve the performance of your code reading and writing. JDeli can be used with threads, unlike ImageIO. JDeli has a similar API to ImageIO. It is also easy to switch between the two in your code. JDeli is actively being developed by IDRsolutions' development team, who use it in their other products. Unable to add a platform dependence? JDeli is 100% Java, and does not require plugins or native dependencies.
  • 3
    PyQtGraph Reviews
    PyQtGraph is a graphics and GUI library developed in pure Python, utilizing PyQt/PySide alongside NumPy, designed primarily for applications in mathematics, science, and engineering. Despite its complete implementation in Python, the library achieves impressive speed by effectively utilizing NumPy for numerical computations and the Qt GraphicsView framework for efficient rendering. Released under the MIT open-source license, PyQtGraph supports fundamental 2D plotting through interactive view boxes, enabling line and scatter plots with user-friendly mouse control for panning and scaling. Its ability to handle various data types, including integers, floats, and different bit depths, is complemented by functionalities for slicing multidimensional images at various angles, making it particularly useful for MRI data analysis. Furthermore, it facilitates rapid updates suitable for video display or real-time interactions, along with image display features that include interactive lookup tables and level adjustments. The library also provides mesh rendering capabilities with isosurface generation, while interactive viewports allow users to rotate and zoom with ease using the mouse. Additionally, it incorporates a basic 3D scenegraph, simplifying the programming process for three-dimensional data visualization. With its robust set of features, PyQtGraph caters to a wide range of visualization needs and enhances user experience through interactivity.
  • 4
    yarl Reviews

    yarl

    Python Software Foundation

    Free
    All components of a URL, including scheme, user, password, host, port, path, query, and fragment, can be accessed through their respective properties. Every manipulation of a URL results in a newly generated URL object, and the strings provided to the constructor or modification functions are automatically encoded to yield a canonical format. While standard properties return percent-decoded values, the raw_ variants should be used to obtain encoded strings. A human-readable version of the URL can be accessed using the .human_repr() method. Binary wheels for yarl are available on PyPI for operating systems such as Linux, Windows, and MacOS. In cases where you wish to install yarl on different systems like Alpine Linux—which does not comply with manylinux standards due to the absence of glibc—you will need to compile the library from the source using the provided tarball. This process necessitates having a C compiler and the necessary Python headers installed on your machine. It is important to remember that the uncompiled, pure-Python version is significantly slower. Nevertheless, PyPy consistently employs a pure-Python implementation, thus remaining unaffected by performance variations. Additionally, this means that regardless of the environment, PyPy users can expect consistent behavior from the library.
  • 5
    pyglet Reviews
    Pyglet is a versatile and user-friendly library designed for Python, enabling the creation of games and visually engaging applications across various operating systems, including Windows, Mac OS X, and Linux. It offers a comprehensive range of features such as window management, event handling for user interfaces, support for joysticks, OpenGL graphics, image and video loading, as well as sound and music playback. The library boasts a user-friendly Pythonic API that is straightforward to grasp, ensuring a smooth development experience. Licensed under the BSD open-source license, pyglet allows for both commercial use and contributions to other open-source projects with minimal restrictions. It requires no external dependencies or complex installation processes, as it operates solely on Python, which streamlines both distribution and installation. This simplicity makes it convenient to bundle your project using tools like PyInstaller. Additionally, pyglet facilitates the use of genuine platform-native windows, giving developers the ability to leverage multiple windows and accommodate multi-monitor setups efficiently. With such capabilities, pyglet stands out as an excellent choice for developers looking to create rich multimedia applications in Python.
  • 6
    Pillow Reviews
    The Python Imaging Library enhances your Python interpreter with advanced image processing features. This library offers a wide range of file format compatibility, an efficient internal structure, and robust image processing functionalities. Its core design focuses on enabling quick access to data in several fundamental pixel formats, serving as a reliable base for general image processing applications. For enterprises, Pillow is accessible through a Tidelift subscription, catering to professional needs. The Python Imaging Library is particularly well-suited for tasks related to image archiving and batch processing workflows. Users can leverage the library to generate thumbnails, switch between file formats, print images, and more. The latest version supports a diverse array of formats, while write capabilities are carefully limited to the most prevalent interchange and display formats. Additionally, the library includes essential image processing features such as point operations, filtering through built-in convolution kernels, and converting color spaces, making it a comprehensive tool for both casual and advanced users alike. Its versatility ensures that developers can efficiently handle various image-related tasks with ease.
  • 7
    ruffus Reviews
    Ruffus is a Python library designed for creating computation pipelines, known for being open-source, robust, and user-friendly, making it particularly popular in scientific and bioinformatics fields. This tool streamlines the automation of scientific and analytical tasks with minimal hassle and effort, accommodating both simple and extremely complex pipelines that might confuse traditional tools like make or scons. It embraces a straightforward approach without relying on "clever magic" or pre-processing, focusing instead on a lightweight syntax that aims to excel in its specific function. Under the permissive MIT free software license, Ruffus can be freely utilized and incorporated, even in proprietary applications. For optimal performance, it is advisable to execute your pipeline in a separate “working” directory, distinct from your original data. Ruffus serves as a versatile Python module for constructing computational workflows and requires a Python version of 2.6 or newer, or 3.0 and above, ensuring compatibility across various environments. Moreover, its simplicity and effectiveness make it a valuable tool for researchers looking to enhance their data processing capabilities.
  • 8
    NumPy Reviews
    Fast and adaptable, the concepts of vectorization, indexing, and broadcasting in NumPy have become the benchmark for array computation in the present day. This powerful library provides an extensive array of mathematical functions, random number generators, linear algebra capabilities, Fourier transforms, and beyond. NumPy is compatible with a diverse array of hardware and computing environments, seamlessly integrating with distributed systems, GPU libraries, and sparse array frameworks. At its core, NumPy is built upon highly optimized C code, which allows users to experience the speed associated with compiled languages while enjoying the flexibility inherent to Python. The high-level syntax of NumPy makes it user-friendly and efficient for programmers across various backgrounds and skill levels. By combining the computational efficiency of languages like C and Fortran with the accessibility of Python, NumPy simplifies complex tasks, resulting in clear and elegant solutions. Ultimately, this library empowers users to tackle a wide range of numerical problems with confidence and ease.
  • 9
    statsmodels Reviews
    Statsmodels is a Python library designed for the estimation of various statistical models, enabling users to perform statistical tests and explore data effectively. Each estimator comes with a comprehensive array of result statistics, which are validated against established statistical software to ensure accuracy. This package is distributed under the open-source Modified BSD (3-clause) license, promoting free use and modification. Users can specify models using R-style formulas or utilize pandas DataFrames for convenience. To discover available results, you can check dir(results), and you will find that attributes are detailed in results.__doc__, while methods include their own docstrings for further guidance. Additionally, numpy arrays can be employed as an alternative to formulas. For most users, the simplest way to install statsmodels is through the Anaconda distribution, which caters to data analysis and scientific computing across various platforms. Overall, statsmodels serves as a powerful tool for statisticians and data analysts alike.
  • 10
    pexpect Reviews
    Pexpect enhances the functionality of Python when it comes to managing other applications. This pure Python library excels at spawning child processes, overseeing them, and reacting to predefined output patterns. Similar to Don Libes’ Expect, Pexpect allows your scripts to interact with child applications as if a human were entering commands. It is particularly useful for automating the control of interactive applications such as ssh, FTP, passwd, and telnet. Additionally, Pexpect can facilitate the automation of setup scripts, making it easier to replicate software package installations across various servers. It is also valuable for conducting automated software testing. While Pexpect is inspired by the principles of Expect, it is entirely implemented in Python, setting it apart from other similar modules. Notably, Pexpect does not necessitate the use of TCL or Expect, nor does it require the compilation of C extensions. This feature makes it versatile across any platform that supports Python's standard pty module. The user-friendly design of the Pexpect interface ensures ease of use for developers. Overall, Pexpect stands out as an effective tool for automating and controlling various applications seamlessly.
  • 11
    openpyxl Reviews
    Openpyxl is a Python library designed for reading and writing Excel 2010 files in formats such as xlsx, xlsm, xltx, and xltm. The library was developed due to the absence of a native solution for handling Office Open XML files in Python, and it owes its origins to the PHPExcel project. It is important to note that openpyxl does not provide protection against certain vulnerabilities like quadratic blowup or billion laughs XML attacks by default, but these risks can be mitigated by installing the defusedxml library. To install openpyxl, you can use pip, and it's recommended to perform this installation within a Python virtual environment to avoid conflicts with system packages. In some instances, you may want to work with a specific version of the library, especially if there are fixes that have not yet been released officially. Fortunately, you do not need to create an actual file on your filesystem to begin using openpyxl; simply import the Workbook class and begin your tasks. When you create sheets, they are automatically assigned names, and once you rename a worksheet, you can access it using the corresponding key from the workbook. This ease of use makes openpyxl a popular choice for many Python developers working with Excel files.
  • 12
    h5py Reviews
    The h5py library serves as a user-friendly interface for the HDF5 binary data format in Python. It allows users to handle vast quantities of numerical data and efficiently work with it alongside NumPy. For instance, you can access and manipulate multi-terabyte datasets stored on your disk as if they were standard NumPy arrays. You can organize thousands of datasets within a single file, applying your own categorization and tagging methods. H5py embraces familiar NumPy and Python concepts, such as dictionary and array syntax. For example, it enables you to loop through datasets in a file or examine the .shape and .dtype properties of those datasets. Getting started with h5py requires no prior knowledge of HDF5, making it accessible for newcomers. Besides its intuitive high-level interface, h5py is built on an object-oriented Cython wrapper for the HDF5 C API, ensuring that nearly any operation possible in C with HDF5 can also be performed using h5py. This combination of simplicity and power makes it a popular choice for data handling in the scientific community.
  • 13
    Matplotlib Reviews
    Matplotlib serves as a versatile library for generating static, animated, and interactive visual representations in Python. It simplifies the creation of straightforward plots while also enabling the execution of more complex visualizations. Numerous third-party extensions enhance Matplotlib's capabilities, featuring various advanced plotting interfaces such as Seaborn, HoloViews, and ggplot, along with tools for projections and mapping like Cartopy. This extensive ecosystem allows users to tailor their visualizations to meet specific needs and preferences.
  • 14
    urllib3 Reviews
    urllib3 is an efficient and easy-to-use HTTP client designed for Python developers. It has become a staple in the Python community, with numerous libraries relying on it for their functionality. This library includes essential features that are often absent in the standard library, such as thread safety, connection pooling, and client-side TLS/SSL verification. Additionally, it supports file uploads with multipart encoding and provides utilities for retrying requests as well as handling HTTP redirects. Furthermore, urllib3 is equipped to handle gzip, deflate, and brotli encoding, and it offers proxy support for both HTTP and SOCKS protocols. With comprehensive test coverage, it stands out as one of the most downloaded packages on PyPI, serving as a vital dependency for widely-used libraries like Requests and Pip. Additionally, urllib3 is distributed under the MIT License, making it accessible for developers. For detailed information, the API Reference documentation serves as a guide for understanding the API, while the User Guide is an excellent resource for learning how to effectively utilize the library for various tasks; if you're looking for advanced configurations, the Advanced Usage guide provides deeper insights into lower-level adjustments. This versatility makes urllib3 a key tool for anyone working with HTTP in Python.
  • 15
    websockets Reviews

    websockets

    Python Software Foundation

    Free
    The websockets library offers a comprehensive implementation of the WebSocket Protocol (RFC 6455 & 7692) for creating both WebSocket servers and clients in Python, emphasizing accuracy, simplicity, durability, and high performance. Utilizing asyncio, which is Python’s built-in asynchronous I/O framework, it presents a sophisticated coroutine-based API that streamlines development. The library has undergone extensive testing to ensure it meets the requirements outlined in RFC 6455, and its continuous integration process mandates that every branch achieves 100% coverage. Designed specifically for production environments, websockets was notably the first library to effectively address backpressure issues before they gained widespread attention in the Python ecosystem. Furthermore, it offers optimized and adjustable memory usage, and utilizes a C extension to enhance performance for demanding operations. The library is conveniently pre-compiled for Linux, macOS, and Windows, and is distributed in wheel format tailored for each system and Python version. With websockets managing the intricate details, developers can dedicate their efforts to building robust applications without concern for the underlying complexities. This makes it an essential tool for developers looking to harness the full potential of WebSocket technology.
  • 16
    pygame Reviews
    Pygame is a collection of Python modules specifically created for developing video games. By building upon the robust SDL library, Pygame empowers developers to craft comprehensive games and multimedia applications using the Python programming language. This library is remarkably versatile, functioning seamlessly across a wide range of platforms and operating systems. Moreover, Pygame is available for free, distributed under the LGPL license, permitting the development of open-source, freeware, shareware, and commercial games. As multi-core CPUs become increasingly common, leveraging these processors enables developers to enhance their game's performance significantly. Certain Pygame functions can release the notorious Python Global Interpreter Lock (GIL), achieving performance improvements typically associated with C code. The library employs optimized C and assembly code for its fundamental operations, resulting in performance enhancements, with C code often being 10 to 20 times faster than standard Python code, while assembly can surpass Python by over 100 times. Pygame is easily accessible on various operating systems, requiring only a simple installation command such as apt-get, emerge, or pkg_add to get started. This accessibility and performance scalability make it an attractive choice for both novice and experienced developers alike.
  • 17
    Bokeh Reviews
    Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.
  • 18
    Beautiful Soup Reviews
    Beautiful Soup is a powerful library designed for the straightforward extraction of data from web pages. It operates on top of an HTML or XML parser, offering Pythonic conventions for traversing, searching, and altering the parse tree. Support for Python 2 was officially ended on December 31, 2020, precisely one year after Python 2 reached its end of life. Consequently, all new developments for Beautiful Soup will now be exclusively focused on Python 3. The last version of Beautiful Soup 4 that provided support for Python 2 was 4.9.3. Additionally, Beautiful Soup is distributed under the MIT license, allowing users to easily download the tarball, incorporate the bs4/ directory into nearly any Python project or library path, and begin utilizing its capabilities right away. This accessibility ensures that developers can quickly integrate web scraping functionalities into their applications without significant barriers.
  • 19
    CVXOPT Reviews
    CVXOPT is an open-source software library designed for convex optimization, leveraging the capabilities of the Python programming language. Users can interact with it through the Python interpreter, execute scripts from the command line, or incorporate it into other applications as Python extension modules. The primary goal of CVXOPT is to facilitate the development of convex optimization software by utilizing Python's rich standard library and the inherent advantages of Python as a high-level programming tool. It provides efficient Python classes for both dense and sparse matrices, supporting real and complex numbers, along with features like indexing, slicing, and overloaded operations for performing matrix arithmetic. Additionally, CVXOPT includes interfaces to various solvers, such as the linear programming solver in GLPK, the semidefinite programming solver in DSDP5, and solvers for linear, quadratic, and second-order cone programming available in MOSEK, making it a versatile tool for researchers and developers in the field of optimization. This comprehensive set of features enhances its utility in tackling a wide range of optimization problems.
  • 20
    tox Reviews
    tox is designed to streamline and automate the testing process in Python. This tool is a key component of a broader initiative to simplify the packaging, testing, and deployment workflow for Python applications. Serving as a universal virtualenv management tool and a test command-line interface, tox allows developers to verify that their packages can be installed correctly across multiple Python versions and interpreters. It facilitates running tests in each environment, configuring the preferred testing tools, and integrating seamlessly with continuous integration servers, which significantly minimizes redundant code and merges CI with shell-based testing. To get started, you can install tox by executing `pip install tox`. Next, create a `tox.ini` file adjacent to your `setup.py` file, detailing essential information about your project and the various test environments you plan to utilize. Alternatively, you can generate a `tox.ini` file automatically by running `tox-quickstart`, which will guide you through a series of straightforward questions. After setting up, be sure to install and validate your project with both Python 2.7 and Python 3.6 to ensure compatibility. This thorough approach helps maintain the reliability and functionality of your Python software across different versions.
  • 21
    Seaborn Reviews
    Seaborn is a versatile data visualization library for Python that builds upon matplotlib. It offers a user-friendly interface for creating visually appealing and insightful statistical graphics. To gain a foundational understanding of the library's concepts, you can explore the introductory notes or relevant academic papers. For installation instructions, check out the dedicated page that guides you on how to download and set up the package. You can also explore the example gallery to discover various visualizations you can create with Seaborn, and further your knowledge by diving into the tutorials or API reference for detailed guidance. If you wish to examine the source code or report any issues, the GitHub repository is the place to go. Additionally, for general inquiries and community support, StackOverflow features a specific section for Seaborn discussions. Engaging with these resources will enhance your ability to effectively use the library.
  • 22
    scikit-learn Reviews
    Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.
  • 23
    python-sql Reviews

    python-sql

    Python Software Foundation

    Free
    Python-SQL is a library designed to facilitate the writing of SQL queries in a more Pythonic manner, supporting a variety of functionalities such as basic selects, selections with where clauses, and complex joins including multiple joins. It allows for groupings and output naming, alongside ordering results and executing sub-selects, while also enabling queries on different schemas. The library is capable of performing insert operations with default values, specific values, or even using another query for insertion. Furthermore, it accommodates updates with specified values, conditions, or lists, as well as deletions based on conditions or sub-queries. Additionally, it offers different query styles including limit style, qmark style, and numeric style to cater to diverse programming needs. This versatility makes Python-SQL a powerful tool for developers working with databases in a Python environment.
  • 24
    Pylons Reviews

    Pylons

    Python Software Foundation

    Free
    The Pylons web framework is tailored for the straightforward and efficient creation of web applications and websites. These applications can vary significantly in size, ranging from a simple Python module to an extensive directory structure suitable for more intricate web solutions. With the availability of project templates, Pylons allows developers to quickly initiate a new web application, or they can opt to create a custom setup from square one to meet their specific requirements. This framework simplifies the process of developing web applications in Python, embracing a minimalist and component-based approach that enhances expandability. It also leverages developers' existing knowledge of Python, promoting an extensible application design that is both fast and efficient. The framework boasts an impressively small per-request call stack, which ensures exceptional performance levels and relies on established, reliable Python packages. While the Pylons 1.0 series is recognized as stable and ready for production, it is currently only in maintenance mode. Moving forward, the Pylons Project has shifted its focus to the Pyramid web framework for ongoing development, and users of Pylons 1.0 are highly encouraged to consider transitioning to Pyramid for their upcoming projects, which offers even more advanced functionalities and support. This transition can significantly enhance the development experience and provide access to new features that are continuously being improved.
  • 25
    PyPI Reviews
    PyPI serves as the official repository for Python software packages, featuring a vast collection of projects that developers can make available while users can easily find and install them. It accommodates both source distributions, known as “sdists,” and pre-built binary formats called “wheels,” which enable the inclusion of native extensions tailored for various platforms. Each project hosted on PyPI is made up of several releases, with each release potentially containing different files suited for various operating systems or Python versions. The metadata associated with every package encompasses details such as version numbers, dependencies, licensing information, classifiers, descriptive text (with support for Markdown or reStructuredText), and other essential data that tools like pip utilize to accurately resolve, download, and install the appropriate package. Users can effectively search and filter packages using the metadata, allowing them to locate the desired software through keywords, compatibility details, or other relevant attributes. With its extensive functionality, PyPI enhances the accessibility and organization of Python packages for developers and users alike.
  • 26
    python-docx Reviews
    The library python-docx is designed for manipulating Microsoft Word (.docx) files using Python. In Word documents, paragraphs play a crucial role, serving not only as body text but also for headings and list items like bullets. Users can define both width and height for elements, although it is generally advisable to avoid doing so. When a single dimension is specified, python-docx automatically calculates the other dimension to maintain the aspect ratio, ensuring that images retain their intended appearance without distortion. If you are unfamiliar with Word paragraph styles, it’s worth exploring, as these styles allow you to apply a comprehensive set of formatting options to a paragraph in one go. The library enables users to create new documents or modify existing ones, and while it primarily focuses on making alterations to current documents, starting with an empty file may give the impression of building a document from the ground up. By utilizing this library, users can streamline their workflow in creating and editing Word documents effectively.
  • 27
    Python Reviews
    At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
  • 28
    Mako Reviews
    Mako offers a user-friendly, non-XML syntax that compiles into Python modules, ensuring optimal performance. Its syntax and API draw inspiration from various sources, such as Django, Jinja2, Cheetah, Myghty, and Genshi, integrating the best elements from each. At its core, Mako functions as an embedded Python language (akin to Python Server Pages), enhancing conventional concepts of componentized layout and inheritance to create a highly efficient and adaptable model. This design maintains a close relationship with Python's calling and scoping semantics, allowing for seamless integration. Since templates are ultimately compiled into Python bytecode, Mako's methodology is remarkably efficient, having been designed to match the speed of Cheetah initially. Presently, Mako's performance is nearly on par with Jinja2, which employs a similar technique and was influenced by Mako. Furthermore, it can access variables from both its enclosing scope and the request context of the template, providing additional flexibility for developers. This capability allows for greater dynamic content generation in web applications.
  • 29
    Plotly Dash Reviews
    Dash & Dash Enterprise allow you to build and deploy analytic web applications using Python, R, or Julia. No JavaScript or DevOps are required. The world's most successful companies offer AI, ML and Python analytics at a fraction of the cost of full-stack development. Dash is the way they do it. Apps and dashboards that run advanced analytics such as NLP, forecasting and computer vision can be delivered. You can work in Python, R, or Julia. Reduce costs by migrating legacy per-seat license software to Dash Enterprise's unlimited end-user pricing model. You can deploy and update Dash apps faster without an IT or DevOps staff. You can create pixel-perfect web apps and dashboards without having to write any CSS. Kubernetes makes it easy to scale. High availability support for mission-critical Python apps
  • 30
    scikit-image Reviews
    Scikit-image is an extensive suite of algorithms designed for image processing tasks. It is provided at no cost and without restrictions. Our commitment to quality is reflected in our peer-reviewed code, developed by a dedicated community of volunteers. This library offers a flexible array of image processing functionalities in Python. The development process is highly collaborative, with contributions from anyone interested in enhancing the library. Scikit-image strives to serve as the definitive library for scientific image analysis within the Python ecosystem. We focus on ease of use and straightforward installation to facilitate adoption. Moreover, we are judicious about incorporating new dependencies, sometimes removing existing ones or making them optional based on necessity. Each function in our API comes with comprehensive docstrings that clearly define expected inputs and outputs. Furthermore, arguments that share conceptual similarities are consistently named and positioned within function signatures. Our test coverage is nearly 100%, and every piece of code is scrutinized by at least two core developers prior to its integration into the library, ensuring robust quality control. Overall, scikit-image is committed to fostering a rich environment for scientific image analysis and ongoing community engagement.
  • 31
    NetworkX Reviews
    NetworkX is a Python library designed for constructing, altering, and analyzing the intricacies, behaviors, and functionalities of complex networks. It offers generators for various types of graphs, including traditional, random, and synthetic networks. The advantages of using Python further enhance the experience, providing quick prototyping capabilities, ease of learning, and compatibility across multiple platforms. Additionally, it facilitates a comprehensive examination of network structures and the application of various analytical measures. This makes NetworkX an invaluable tool for researchers and practitioners in the field of network science.
  • 32
    requests Reviews

    requests

    Python Software Foundation

    Free
    Requests is an elegantly designed library for HTTP that simplifies the process of sending HTTP/1.1 requests. It eliminates the hassle of manually appending query strings to URLs or encoding data for PUT and POST requests; instead, it encourages users to leverage the convenient JSON method. Currently, Requests boasts an impressive weekly download rate of approximately 30 million, making it one of the most popular Python packages, and it is utilized by over 1,000,000 repositories on GitHub, which solidifies its reliability and trustworthiness. This powerful library is readily accessible through PyPI and is equipped to meet the demands of building robust and efficient HTTP applications for modern requirements. It features automatic content decompression and decoding, support for international domains and URLs, as well as sessions that maintain cookie persistence. Additionally, it offers browser-style TLS/SSL verification, basic and digest authentication, and cookies that behave like familiar dictionaries. Users can also take advantage of multi-part file uploads, SOCKS proxy support, connection timeouts, and streaming downloads, ensuring a comprehensive toolkit for developers. Overall, the Requests library stands as a testament to simplicity and effectiveness in web communication.
  • 33
    gevent Reviews
    Gevent is a Python networking library that employs coroutines, utilizing greenlet to offer a high-level synchronous interface built on the libev or libuv event loop. While it draws inspiration from eventlet, gevent distinguishes itself with a more coherent API, easier implementation, and superior performance. Many developers have adopted gevent for its efficiency and flexibility, and there is a variety of open-source projects that are built upon its foundation. Exploring these projects can provide valuable insights into gevent's capabilities and its importance in modern networking applications.
  • 34
    pdf2docx Reviews
    pdf2docx is a Python library that leverages PyMuPDF to extract information from PDF documents, analyze their layouts based on specific rules, and create corresponding .docx files using python-docx. This library facilitates the conversion of various elements, including text, images, and tables, and is equipped with features to extract tables, manage formatting, and maintain layout integrity as much as possible. In addition, it offers a command-line interface as well as a graphical user interface to accommodate different user preferences. Its modular architecture comprises distinct packages for managing pages, layouts, tables, images, shape paths, text spans, and other components, allowing for precise control over the translation of PDF content into Word documents. Developers can take advantage of the API for batch conversion processes or seamlessly integrate it into their existing workflows. Comprehensive documentation is provided, covering installation (available from PyPI or source), usage instructions, and technical insights into layout parsing, table extraction, and the various internal modules. The project is open-source and hosted on GitHub, operating under its license and disclaiming any warranties. Overall, pdf2docx is a versatile tool that significantly streamlines the conversion process from PDF to Word format, making it an essential asset for anyone working with these file types.
  • 35
    waiting Reviews

    waiting

    Python Software Foundation

    Free
    Waiting is a compact library designed to facilitate the process of waiting for specific conditions to be met. It fundamentally pauses execution until a designated function returns True, offering various operational modes. Additionally, Waiting is designed to work seamlessly with flux for simulating timelines. The simplest way to utilize it is by providing a function to monitor. It’s straightforward to wait indefinitely; if your predicate yields a value, that value will be returned as the output of wait(). You can also set a timeout, and if this period lapses without the predicate being satisfied, an exception will occur. The library polls the predicate at a default interval of one second, which can be adjusted using the sleep_seconds parameter. When dealing with multiple predicates, Waiting offers two efficient methods for aggregation: any and all. These methods are similar to Python's built-in any() and all(), but they ensure that a predicate is not invoked more than necessary, which is particularly beneficial when working with predicates that are resource-intensive and time-consuming. By streamlining these functions, Waiting enhances both the efficiency and user experience of handling asynchronous operations.
  • 36
    zope.interface Reviews

    zope.interface

    Python Software Foundation

    Free
    This package is designed for independent reuse across any Python project and is maintained by the Zope Toolkit initiative. It serves as an implementation of "object interfaces" within the Python ecosystem. Interfaces act as a way to designate objects as adhering to a specific API or contract, making this package a practical example of applying the Design By Contract methodology in Python. Essentially, interfaces are objects that detail (document) the expected external behavior of the objects that implement them. An interface articulates behavior through a combination of informal documentation within a docstring, attribute definitions, and invariants, which are the necessary conditions that must be satisfied by the objects implementing the interface. Attribute definitions specify particular attributes, outlining their names while offering documentation and constraints regarding the allowed values for those attributes. These definitions can take various forms, allowing for flexibility in how they are expressed. Furthermore, the ability to define interfaces enhances the clarity and reliability of code by ensuring that objects conform to specified behaviors.
  • 37
    Tomviz Reviews
    Tomviz is a versatile open-source application that operates across different platforms, specifically tailored for processing, visualizing, and analyzing 3D tomographic datasets, with an emphasis on electron tomography. Its user-friendly graphical interface empowers users to portray objects in various forms, such as shaded contours or volumetric projections, which enhances the exploration and examination of extensive 3D tomograms. The software allows simultaneous handling of multiple datasets, offering customizable colormaps and visualization options for tasks like rotation, slicing, animation, and exporting visual content as images or videos. Users can engage in sophisticated data analysis using tools like histograms, multicorrelative statistics, various filtering options, and personalized Python scripts. Furthermore, Tomviz supports the reconstruction of tomographic data from experimental sources and includes an extensive array of Python tools aimed at 3D analysis to facilitate the implementation of custom algorithms. This powerful platform is designed to work seamlessly on 64-bit versions of Windows, macOS, and Linux operating systems, making it accessible for a wide range of users and applications. Overall, Tomviz stands out as a comprehensive solution for anyone involved in the field of electron tomography and 3D data analysis.
  • 38
    WTForms Reviews
    WTForms is a versatile library designed for form validation and rendering in Python web applications. It seamlessly integrates with any web framework or template engine you prefer, making it a highly adaptable choice. The library offers essential features such as data validation, CSRF protection, and internationalization (I18N), among others. Numerous community-contributed libraries enhance its compatibility with widely-used frameworks, showcasing its flexibility. While we have compiled a list of recognized libraries that work well with WTForms, the absence of a particular library on this list does not imply incompatibility; in fact, most ORMs or object databases should function properly as long as they allow attribute access to their data members. WTForms employs unicode strings consistently throughout its codebase and expects that any form input is converted to unicode by the chosen framework. Since WTForms fields automatically render as unicode strings, you should not encounter any unicode-related issues as long as your templating engine is capable of handling them efficiently. This ease of integration further solidifies WTForms as an essential tool for developers looking to manage forms in their applications.
  • 39
    Locust Reviews
    An open-source tool for load testing, Locust allows you to define user interactions using Python code and can bombard your system with millions of concurrent users. Forget about cumbersome user interfaces or complex XML configurations—it's all about straightforward coding. This tool also supports distributed load testing across multiple machines, enabling the simulation of vast numbers of simultaneous users. A key aspect of Locust is that you can articulate all your tests directly in Python code, eliminating the need for unwieldy interfaces. Installation is a breeze, as you can simply obtain Locust from PyPI via pip. By leveraging Python for test definitions, users can easily customize and optimize their load tests as needed.
  • 40
    Cython Reviews
    Cython serves as an optimizing static compiler designed for both the Python language and the enhanced Cython language, which is rooted in Pyrex. It simplifies the process of creating C extensions for Python, making it as straightforward as writing Python itself. With Cython, developers can harness the strengths of both Python and C, enabling seamless interactions between Python code and C or C++ code at any point. By incorporating static type declarations in a Python-like syntax, users can easily enhance the performance of their readable Python code to that of plain C. The tool also provides combined source code level debugging, allowing developers to efficiently identify issues within their Python, Cython, and C code. Cython is particularly adept at managing large datasets, such as multi-dimensional NumPy arrays, facilitating the development of applications within the expansive and robust CPython ecosystem. Notably, the Cython language extends the capabilities of Python by allowing direct calls to C functions and the declaration of C types for variables and class attributes, ultimately enhancing the development experience. This fusion of languages not only broadens the possibilities for developers but also streamlines the process of optimizing Python applications.
  • 41
    IDLE Reviews
    IDLE serves as Python's Integrated Development and Learning Environment, providing a user-friendly platform for developers and learners alike. It boasts several notable features: - Entirely crafted in pure Python and leverages the tkinter GUI toolkit for its interface. - Offers cross-platform compatibility, ensuring a consistent experience across Windows, Unix, and macOS operating systems. - Includes a Python shell window that functions as an interactive interpreter, complete with color coding for code input, output, and error notifications. - Features a multi-window text editor equipped with advanced functionalities such as multiple undo options, syntax highlighting for Python, smart indentation, call tips, auto-completion, and additional tools to enhance coding efficiency. - Allows users to perform searches within any window, replace text directly in editor windows, and conduct searches across multiple files with a grep-like capability. - Comes with a debugger that offers persistent breakpoints, step-through functionality, and the ability to inspect both global and local namespaces. - Provides configuration options, browsers, and various other dialog boxes to customize the user experience further. All these features combine to make IDLE an invaluable tool for anyone looking to develop in Python.
  • 42
    E-ICEBLUE Reviews
    E-iceblue offers an extensive array of professional development libraries and APIs that empower developers to programmatically create, read, write, edit, convert, print, manipulate, and view various document formats across different programming environments, all without the need for external software like Microsoft Office or Adobe Acrobat. Their product lineup features Spire.Office alongside specific components tailored for .NET platforms, which include Spire.Doc, Spire.XLS, Spire.Presentation, Spire.PDF, Spire.Barcode, Spire.Email, and Spire.OCR, thus accommodating tasks related to Word, Excel, PowerPoint, PDF, barcode generation, and email functionalities in C#, VB.NET, ASP.NET, .NET Core, Xamarin, and WPF applications, in addition to viewer libraries for seamless embedded document display. Furthermore, E-iceblue provides parallel APIs for Java, C++, Python, and JavaScript, as well as mobile and cloud solutions, notably Spire.Cloud.Office, which features HTML5 browser support for Word and Excel, enabling a comprehensive approach to document processing tasks. This extensive offering ensures that developers have access to versatile tools that can meet a wide variety of document management needs.
  • 43
    parsel Reviews

    parsel

    Python Software Foundation

    Free
    Parsel is a Python library licensed under BSD that facilitates the extraction and removal of data from HTML and XML documents using XPath and CSS selectors, with the option to integrate regular expressions. To begin, you create a selector object for the HTML or XML content you wish to analyze. After that, you can utilize either CSS or XPath expressions to target specific elements. CSS serves as a styling language for HTML, defining selectors that link styles to designated HTML elements, while XPath is utilized for selecting nodes within XML documents and can also be applied to HTML. Although both CSS and XPath can be used, CSS tends to offer greater readability, whereas XPath provides capabilities that may not be achievable through CSS alone. Built on top of lxml, parsel selectors incorporate some EXSLT extensions and come with pre-registered namespaces available for use in XPath queries. Furthermore, parsel selectors allow for the chaining of selectors, enabling users to primarily select by class using CSS and seamlessly transition to XPath when the situation demands it, enhancing flexibility in data extraction tasks. This dual capability makes parsel a powerful tool for developers working with web data.
  • 44
    Avanzai Reviews
    Avanzai accelerates your financial data analysis by allowing you to generate production-ready Python code through natural language commands. This innovative tool streamlines the financial analysis process for novices and seasoned professionals alike, utilizing simple English for interaction. You can effortlessly plot time series data, equity index components, and stock performance metrics with straightforward prompts. Eliminate tedious aspects of financial analysis by using AI to produce code with the necessary Python libraries pre-installed. Once the code is generated, you can modify it as needed, then easily transfer it into your local setup to dive right into your projects. Benefit from popular Python libraries tailored for quantitative analysis, including Pandas and Numpy, all while communicating in plain English. Elevate your financial analysis capabilities by swiftly accessing fundamental data and assessing the performance of nearly every US stock. With Avanzai, you can enhance your investment strategies using precise and timely information, empowering you to write the same Python scripts that quantitative analysts rely on for dissecting intricate financial datasets. This revolutionary approach not only simplifies the coding process but also enriches your understanding of data-driven investment decisions.
  • 45
    Python RPA Reviews

    Python RPA

    Python RPA

    $275 per month
    Experience an RPA platform that is both robust and budget-friendly. Leverage the adaptability of Python, the ease of low-code solutions, and the advantages of AI to achieve intelligent automation. The Python RPA platform simplifies the development and management of bots, making it user-friendly for developers. Thanks to Python's extensive capabilities, this platform serves as a powerful asset for streamlining business processes efficiently. It features an enterprise-grade orchestrator designed for the seamless management of both Python scripts and low-code initiatives. A basic understanding of Python is sufficient to embark on your automation journey confidently. Stay informed with real-time notifications and a comprehensive status management dashboard. The platform ensures an uninterrupted execution flow that maintains operational efficiency. User access is managed securely, protecting your credentials while logging all activities. You are free to utilize any library or framework in your project, and can develop your Python automation within any open-source Python development environment. This flexibility not only enhances creativity but also empowers teams to innovate without limits.