Best Artificial Intelligence Software for Azure Kubernetes Service (AKS)

Find and compare the best Artificial Intelligence software for Azure Kubernetes Service (AKS) in 2024

Use the comparison tool below to compare the top Artificial Intelligence software for Azure Kubernetes Service (AKS) on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Parasoft Reviews
    Top Pick

    Parasoft

    $125/user/mo
    115 Ratings
    See Software
    Learn More
    Parasoft's mission is to provide automated testing solutions and expertise that empower organizations to expedite delivery of safe and reliable software. A powerful unified C and C++ test automation solution for static analysis, unit testing and structural code coverage, Parasoft C/C++test helps satisfy compliance with industry functional safety and security requirements for embedded software systems.
  • 2
    Ray Reviews

    Ray

    Anyscale

    Free
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 3
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 4
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 5
    Elastic Observability Reviews
    The most widely used observability platform, built on the ELK Stack, is the best choice. It converges silos and delivers unified visibility and actionable insight. All your observability data must be in one stack to effectively monitor and gain insight across distributed systems. Unify all data from the application, infrastructure, user, and other sources to reduce silos and improve alerting and observability. Unified solution that combines unlimited telemetry data collection with search-powered problem resolution for optimal operational and business outcomes. Converge data silos with the ingesting of all your telemetry data from any source, in an open, extensible and scalable platform. Automated anomaly detection powered with machine learning and rich data analysis can speed up problem resolution.
  • 6
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.
  • 7
    Azure AI Document Intelligence Reviews

    Azure AI Document Intelligence

    Microsoft

    $1.50 per 1,000 pages
    AI Document Intelligence uses advanced machine learning techniques to extract text, tables, structures, key-value pairs and other data from documents. Transform documents into useful data and focus on implementing information, rather than compiling. AI Document Intelligence Studio or SDK allows you to create custom models for your documents, both on-premises or in the cloud. AI Document Intelligence can automate text extraction to speed up your business processes. This webinar includes hands-on demonstrations for key use-cases such as document processing and knowledge mining. It also features industry-specific AI models that can be customized. You can accurately extract text, key-value pair, and tables from various documents, forms and receipts. AI Document Intelligence's prebuilt forms, layout APIs, and custom forms can be used to extract information.
  • 8
    Altair Knowledge Works Reviews
    It is clear that data and analytics are key drivers of transformative business initiatives. Enterprises are increasingly able to access data to answer difficult questions. There is a greater demand for machine learning and data transformation tools that are easy to use, low-code, but flexible. Multiple tools can lead to inefficient data analysis, higher costs, and slower decision making. As closed-source solutions become obsolete, aging solutions with redundant features can threaten current data science projects. Knowledge Works combines decades of experience in data preparation and machine learning with one unified interface. As data sizes increase, Knowledge Works develops new open-source features and functionalities, and user profiles become more complex. It is easy to use for data scientists and business analysts.
  • 9
    ModelOp Reviews
    ModelOp is a leading AI governance tool that helps enterprises safeguard AI initiatives including generative AI and Large Language Models. It also protects in-house vendors, third-party vendors and embedded systems without stifling the innovation. Corporate boards and C suites demand the rapid adoption of generative AI, but face financial risks, regulatory, privacy, security, and ethical issues. Governments at all levels, including federal, state and local, are implementing AI regulations and overseeing the industry quickly. This forces enterprises to prepare and comply with rules that prevent AI from going awry. Connect with AI Governance specialists to stay informed on market trends, regulations and news. You can also get insights and opinions from experts. ModelOp Center helps organizations stay safe and provides peace of mind for all stakeholders. Streamline reporting and compliance across the enterprise.
  • Previous
  • You're on page 1
  • Next