Best Artificial Intelligence Software for Azure Kubernetes Service (AKS)

Find and compare the best Artificial Intelligence software for Azure Kubernetes Service (AKS) in 2025

Use the comparison tool below to compare the top Artificial Intelligence software for Azure Kubernetes Service (AKS) on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    New Relic Reviews
    Top Pick
    See Software
    Learn More
    Around 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability.
  • 2
    Parasoft Reviews
    Top Pick

    Parasoft

    $35/user/mo
    136 Ratings
    See Software
    Learn More
    Parasoft's mission is to provide automated testing solutions and expertise that empower organizations to expedite delivery of safe and reliable software. A powerful unified C and C++ test automation solution for static analysis, unit testing and structural code coverage, Parasoft C/C++test helps satisfy compliance with industry functional safety and security requirements for embedded software systems.
  • 3
    Ray Reviews

    Ray

    Anyscale

    Free
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 4
    Dagster Reviews

    Dagster

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 5
    StormForge Reviews
    StormForge drives immediate benefits for organization through its continuous Kubernetes workload rightsizing capabilities — leading to cost savings of 40-60% along with performance and reliability improvements across the entire estate. As a vertical rightsizing solution, Optimize Live is autonomous, tunable, and works seamlessly with the HPA at enterprise scale. Optimize Live addresses both over- and under-provisioned workloads by analyzing usage data with advanced ML algorithms to recommend optimal resource requests and limits. Recommendations can be deployed automatically on a flexible schedule, accounting for changes in traffic patterns or application resource requirements, ensuring that workloads are always right-sized, and freeing developers from the toil and cognitive load of infrastructure sizing.
  • 6
    Elastic Observability Reviews
    Leverage the most extensively utilized observability platform, founded on the reliable Elastic Stack (commonly referred to as the ELK Stack), to integrate disparate data sources, providing cohesive visibility and actionable insights. To truly monitor and extract insights from your distributed systems, it is essential to consolidate all your observability data within a single framework. Eliminate data silos by merging application, infrastructure, and user information into a holistic solution that facilitates comprehensive observability and alerting. By integrating limitless telemetry data collection with search-driven problem-solving capabilities, you can achieve superior operational and business outcomes. Unify your data silos by assimilating all telemetry data, including metrics, logs, and traces, from any source into a platform that is open, extensible, and scalable. Enhance the speed of problem resolution through automatic anomaly detection that leverages machine learning and sophisticated data analytics, ensuring you stay ahead in today's fast-paced environment. This integrated approach not only streamlines processes but also empowers teams to make informed decisions swiftly.
  • 7
    NVIDIA Triton Inference Server Reviews
    The NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process.
  • 8
    Sedai Reviews

    Sedai

    Sedai

    $10 per month
    Sedai intelligently finds resources, analyzes traffic patterns and learns metric performance. This allows you to manage your production environments continuously without any manual thresholds or human intervention. Sedai's Discovery engine uses an agentless approach to automatically identify everything in your production environments. It intelligently prioritizes your monitoring information. All your cloud accounts are on the same platform. All of your cloud resources can be viewed in one place. Connect your APM tools. Sedai will identify and select the most important metrics. Machine learning intelligently sets thresholds. Sedai is able to see all the changes in your environment. You can view updates and changes and control how the platform manages resources. Sedai's Decision engine makes use of ML to analyze and comprehend data at large scale to simplify the chaos.
  • 9
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 10
    Azure AI Document Intelligence Reviews

    Azure AI Document Intelligence

    Microsoft

    $1.50 per 1,000 pages
    AI Document Intelligence is an advanced AI service designed to utilize sophisticated machine learning techniques for the automatic and precise extraction of text, key-value pairs, tables, and other structural elements from various documents. By transforming documents into actionable data, users can redirect their efforts towards leveraging information rather than simply gathering it. Users have the option to begin with existing models or develop personalized models suited to their specific documents, whether on-premises or in the cloud, using the AI Document Intelligence studio or SDK. This technology enables businesses to streamline their processes through the automation of text extraction, significantly enhancing efficiency. The accompanying webinar provides practical demonstrations for essential applications, including document processing, knowledge mining, and customization of AI models for specific industries. With the capability to accurately extract text, key-value pairs, and tables from an array of document types such as forms, receipts, invoices, and cards, there is no need for manual labeling, extensive coding, or ongoing maintenance. Additionally, users can utilize custom forms, prebuilt APIs, and layout APIs offered by AI Document Intelligence to efficiently extract necessary information, propelling their operations into a new realm of productivity and innovation. This comprehensive approach allows organizations to harness the power of AI in managing their documentation seamlessly.
  • 11
    Harness Reviews
    Harness is a comprehensive AI-native software delivery platform designed to modernize DevOps practices by automating continuous integration, continuous delivery, and GitOps workflows across multi-cloud and multi-service environments. It empowers engineering teams to build faster, deploy confidently, and manage infrastructure as code with automated error reduction and cost control. The platform integrates new capabilities like database DevOps, artifact registries, and on-demand cloud development environments to simplify complex operations. Harness also enhances software quality through AI-driven test automation, chaos engineering, and predictive incident response that minimize downtime. Feature management and experimentation tools allow controlled releases and data-driven decision-making. Security and compliance are strengthened with automated vulnerability scanning, runtime protection, and supply chain security. Harness offers deep insights into engineering productivity and cloud spend, helping teams optimize resources. With over 100 integrations and trusted by top companies, Harness unifies AI and DevOps to accelerate innovation and developer productivity.
  • 12
    Fortanix Confidential AI Reviews
    Fortanix Confidential AI presents a comprehensive platform that allows data teams to handle sensitive datasets and deploy AI/ML models exclusively within secure computing environments, integrating managed infrastructure, software, and workflow orchestration to uphold privacy compliance across organizations. This service features on-demand infrastructure driven by the high-performance Intel Ice Lake third-generation scalable Xeon processors, enabling the execution of AI frameworks within Intel SGX and other enclave technologies while ensuring no external visibility. Moreover, it offers hardware-backed execution proofs and comprehensive audit logs to meet rigorous regulatory standards, safeguarding every aspect of the MLOps pipeline, from data ingestion through Amazon S3 connectors or local uploads to model training, inference, and fine-tuning, while also ensuring compatibility across a wide range of models. By leveraging this platform, organizations can significantly enhance their ability to manage sensitive information responsibly while advancing their AI initiatives.
  • 13
    Altair Knowledge Works Reviews
    There is no doubt that data and analytics serve as essential catalysts for revolutionary business projects. An increasing number of individuals throughout organizations are utilizing data to tackle intricate inquiries. The necessity for user-friendly, low-code yet adaptable tools for data transformation and machine learning has reached unprecedented levels. The reliance on multiple disparate tools often results in inefficient analytics workflows, elevated costs, and delayed decision-making processes. Outdated solutions with redundant capabilities pose a risk to ongoing data science endeavors, especially as proprietary features in closed vendor platforms become outdated. By merging extensive expertise in data preparation, machine learning, and visualization into a single cohesive interface, Knowledge Works adapts to expanding data volumes, the introduction of new open-source functionalities, and the evolving sophistication of user profiles. As a result, data scientists and business analysts can seamlessly implement data analytics applications through its accessible, cloud-compatible interface. This integration not only enhances productivity but also fosters a more collaborative environment for data-driven decision-making across the organization.
  • 14
    ModelOp Reviews
    ModelOp stands at the forefront of AI governance solutions, empowering businesses to protect their AI projects, including generative AI and Large Language Models (LLMs), while promoting innovation. As corporate leaders push for swift integration of generative AI, they encounter various challenges such as financial implications, regulatory compliance, security concerns, privacy issues, ethical dilemmas, and potential brand damage. With governments at global, federal, state, and local levels rapidly establishing AI regulations and oversight, organizations must act promptly to align with these emerging guidelines aimed at mitigating AI-related risks. Engaging with AI Governance specialists can keep you updated on market dynamics, regulatory changes, news, research, and valuable perspectives that facilitate a careful navigation of the benefits and hazards of enterprise AI. ModelOp Center not only ensures organizational safety but also instills confidence among all stakeholders involved. By enhancing the processes of reporting, monitoring, and compliance across the enterprise, businesses can foster a culture of responsible AI usage. In a landscape that evolves quickly, staying informed and compliant is essential for sustainable success.
  • 15
    Nutanix Enterprise AI Reviews
    Nutanix Enterprise AI makes it simple to deploy, operate, and develop enterprise AI applications through secure AI endpoints that utilize large language models and generative AI APIs. By streamlining the process of integrating GenAI, Nutanix enables organizations to unlock extraordinary productivity boosts, enhance revenue streams, and realize the full potential of generative AI. With user-friendly workflows, you can effectively monitor and manage AI endpoints, allowing you to tap into your organization's AI capabilities. The platform's point-and-click interface facilitates the effortless deployment of AI models and secure APIs, giving you the flexibility to select from Hugging Face, NVIDIA NIM, or your customized private models. You have the option to run enterprise AI securely, whether on-premises or in public cloud environments, all while utilizing your existing AI tools. The system also allows for straightforward management of access to your language models through role-based access controls and secure API tokens designed for developers and GenAI application owners. Additionally, with just a single click, you can generate URL-ready JSON code, making API testing quick and efficient. This comprehensive approach ensures that enterprises can fully leverage their AI investments and adapt to evolving technological landscapes seamlessly.
  • 16
    StackState Reviews
    StackState's Topology & Relationship-Based Observability platform allows you to manage your dynamic IT environment more effectively. It unifies performance data from existing monitoring tools and creates a single topology. This platform allows you to: 1. 80% Reduced MTTR by identifying the root cause of the problem and alerting the appropriate teams with the correct information. 2. 65% Less Outages: Through real-time unified observation and more planned planning. 3. 3.3.2. 3x faster releases: Developers are given more time to implement the software. Get started today with our free guided demo: https://www.stackstate.com/schedule-a-demo
  • Previous
  • You're on page 1
  • Next