Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror
×

Comment And yet, here we are on the Internet... (Score 1) 194

...reading your op-ed (as opposed to, oh, I don't know, an actual report containing actual facts).

One of the unique characteristics of the Internet is that it provides a way to monetize tiny minority tastes. That way, bozos can produce books or videos on "Down is Up", "Beanie Babies: The New Future-Proof Investment", or "The Unexpected Triumph of Old Media in the Digital Age", and find enough paying customers to make it worth their while.

Comment Hypersupervised programming? (Score 5, Insightful) 126

Golly! How do you suppose that having one person at a time writing code, with the rest of the team effectively doing simultaneous code review, magically produces "fewer features" but "better code quality" than having everybody writing code, then throwing it together and maybe doing a cursory bit of code review at the end?

Next, you'll be telling me that having one or two testers per developer produces better-quality software than spending all your money on developers so you can "get more features".

Comment Re:And 4) (Score 4, Insightful) 639

Exactly this.

Earth's climate will absolutely change because it has never not been changing. That's why the whole "climate change is real" argument is so asinine. Of course it's real. The only question at all is anthropogenesis. But even without anthropogenesis, the climate is guaranteed to change adversely for humans -- because that's what Earth's climate does.

In one hundred thousand years, the climate will absolutely 100% be different -- with or without humans, industry or fossil fuels.

And the chances of Earth remaining in a human-friendly, temperate zone indefinitely are zero.

What humanity needs to come to grips with is that our planet was not designed for us. The opposite is true: We were designed for a brief, fleeting set of climatic conditions that with 100% certitude will not persist indefinitely.

Comment Re:Cool, but way overstated. (Score 1) 47

It almost seems like you're interpreting "UV-C" to include the range from 360-380nm. There are apparently some results indicating that emitters in this range can be germicidal, if you use enough power and enough exposure time; is that where our disconnect is arising?

The Nichia page you linked lists only longwave emitters, with 365nm the shortest wavelength. I'm sure they have shortwave emitters, and maybe even samples for some of them, but if they aren't listed on the Web site, I'm not confident how much of a "product" they are to date.

Cree has never sold UV-C LEDs, as far as I can tell. They sold longwave emitters for a while, but then discontinued them.

I spent some time prowling around HaSun's list of UV LEDs. I haven't waded through every listing, but most of the emitters under 300nm seem to be in the range of 1.5mW or less; I found one ("New Technology!!!") that claimed 0.2-0.3W optical output power in the specs, but in the chart below, it said 0.2-0.3mW. WIth forward current of 20 mA and forward voltage of 7-8.5 V, getting out 200mW of anything would be quite the trick.

Again, we can see that the shortwave emitters exist, but it doesn't look like they're common enough or powerful enough to start appearing in products yet.

Comment Re:Yes and no (Score 2) 47

I'm flattered that you're reposting my links from below, but I think you're missing GP's point. None of those three links appear to describe units that are "commonly available" -- in one case, it's only engineering samples, and in none of the links do they say a word about pricing or actual availability (the last one claims "mass production", but doesn't back it up).

"UV lasers" are mostly 405nm, not really UV, and the quantum dots from TFA are firmly in longwave territory. So, GP's points stand.

Comment Re:Water sterilization is the big thing here (Score 1) 47

Actually, 420 would be a bit too violet for this application. Cree's XR-E emitters seem to use a blue emitter centered around 450nm (pdf), coupled with a yellow phosphor -- blue + yellow = blue + (green + red) = white. That's how most "white" LEDs work. If you used a shorter-wavelength emitter, you'd need to downconvert all its output power, losing efficiency. By using a blue emitter, you pass some of the blue light, and downconvert just enough of it to yield the perceived color temperature you want.

Slashdot Top Deals

Always draw your curves, then plot your reading.

Working...