Urbiverse enhances urban mobility and logistics decision-making through advanced AI simulations, synthetic data solutions, and real-time scenario analysis, along with optimized fleet sizing and infrastructure strategies. This platform allows operators to predict demand by analyzing historical data, significant events, seasonal variations, and real-time metrics; it also enables the simulation of various scenarios to assess the effects of new ride-sharing, bike-sharing, cargo-bike, or fleet-size initiatives on factors like traffic flow, user satisfaction, environmental objectives, profitability, and overall costs. Additionally, it provides insights into the financial consequences under different tender conditions, fine-tunes fleet distribution, manages operations effectively, and organizes micromobility parking. By integrating both real-time and historical data, Urbiverse aids in the efficient allocation of resources across various vehicle categories, facilitating a shift from reliance on assumptions to informed, data-driven choices for mobility operators and urban planners. Moreover, it processes millions of trips to support infrastructure development, allowing urban fleet planners to rigorously test various scenarios and optimize their strategies. This comprehensive approach ultimately leads to smarter urban mobility solutions that can adapt to changing demands and improve overall efficiency in the transportation sector.