Best PathWave EM Design Alternatives in 2025
Find the top alternatives to PathWave EM Design currently available. Compare ratings, reviews, pricing, and features of PathWave EM Design alternatives in 2025. Slashdot lists the best PathWave EM Design alternatives on the market that offer competing products that are similar to PathWave EM Design. Sort through PathWave EM Design alternatives below to make the best choice for your needs
-
1
Altair SimSolid
Altair
SimSolid is the revolutionary simulation technology for engineers, designers, and analysts. It performs structural analyses on fully-featured CAD assemblies in minutes. SimSolid eliminates geometry preparation, meshing, and other errors that are time-consuming and difficult to perform in conventional structural simulations. Multiple design scenarios can be simulated quickly under real-life conditions. You can use any CAD model, even an early one. SimSolid tolerance for imprecise geometry means SimSolid simulation tools don't need to be simplified before analyzing designs. SimSolid supports all types of connections (bolt/nuts, bonded, rivets and sliding) and analysis for linear static, modal, and thermal properties. It also supports complex coupled, nonlinear, dynamic effects. -
2
OrCAD® X is a unified PCB design software platform. It offers significant improvements to ease of use, performance and automation. Our product suite includes applications for schematic, PCB layout, simulation and data management. OrCAD X Capture, a schematic design solution for electrical circuit creation and documentation, is one of OrCAD's most popular products. PSpice®, our virtual SPICE simulation engine integrated into Capture, allows you to prototype and verify your designs using industry-leading native analog, mixed signal, and advanced analysis engines. OrCAD X Presto and OrCAD X PCB editor are two PCB layout tools that allow designers to easily collaborate between ECAD/MCAD teams and build better PCBs faster. OrCAD X Presto is our new, simplified interface for novice designers, electrical engineers and PCB designers focused on quick turn PCB designs.
-
3
PathWave RF Synthesis
Keysight Technologies
Examine RF and microwave circuits and systems using rapid simulation and robust optimization tools that enhance your design process. Delve into performance trade-offs through the integration of automatic circuit synthesis technology. PathWave RF Synthesis (Genesys) offers foundational features that cater to all designers of RF and microwave circuit boards and subsystems. With PathWave Circuit Design, you can uncover RF design mistakes that conventional spreadsheet analyses often overlook. This introductory design platform, which encompasses circuit, system, and electromagnetic simulators, enables you to approach design reviews with greater assurance prior to the realization of hardware. With just a few clicks, you can observe the automatic synthesis and optimization of your matching network. After that, easily transfer your design to PathWave Advanced Design System (ADS) to incorporate it into more intricate designs, ensuring seamless integration and enhanced functionality. By leveraging these tools, you can streamline the design process and enhance the overall efficiency of your RF and microwave projects. -
4
PathWave Advanced Design System (ADS)
Keysight Technologies
PathWave ADS streamlines the design process by providing integrated templates that help users start their projects more efficiently. With a comprehensive selection of component libraries, locating the desired parts becomes a straightforward task. The automatic synchronization with layout offers a clear visualization of the physical arrangement while you create schematic designs. This data-driven approach enables teams to assess if their designs are in line with specifications. PathWave ADS enhances design confidence through its display and analytics features, which generate informative graphs, charts, and diagrams. Users can expedite their design process with the help of wizards, design guides, and templates. The complete design workflow encompasses schematic design, layout, as well as circuit, electro-thermal, and electromagnetic simulations. As frequencies and speeds continue to rise in printed circuit boards (PCBs), ensuring signal and power integrity is critical. Issues arising from transmission line effects can lead to electronic device failures. It is essential to model traces, vias, and interconnects accurately for a realistic simulation of the board, ensuring that potential problems are identified and mitigated early in the design phase. This multifaceted approach not only improves efficiency but also enhances the overall reliability of electronic designs. -
5
Multisim
NI
Multisim™ software combines industry-standard SPICE simulation with an interactive schematic environment that allows for the immediate visualization and analysis of electronic circuit behavior. Its user-friendly interface is designed to assist educators in reinforcing circuit theory and enhancing students' retention of concepts throughout their engineering studies. By integrating robust circuit simulation and analysis into the design workflow, Multisim™ enables researchers and designers to minimize the number of printed circuit board (PCB) prototypes needed, thus reducing development costs significantly. Specifically tailored for educational purposes, Multisim™ serves as a teaching application for analog, digital, and power electronics courses and labs. With its comprehensive suite of SPICE simulation, analysis, and PCB design tools, Multisim™ empowers engineers to efficiently iterate on their designs and enhance the performance of their prototypes while fostering a deeper understanding of electronic principles. This software not only streamlines the design process but also cultivates a hands-on learning experience for students in the field of electronics. -
6
MPLAB Mindi Analog Simulator
Microchip Technology
The MPLAB® Mindi™ Analog Simulator streamlines the process of circuit design and mitigates associated risks by allowing users to simulate analog circuits before moving on to hardware prototyping. Utilizing a SIMetrix/SIMPLIS simulation environment, this tool offers the flexibility of employing SPICE or piecewise linear modeling, catering to a broad spectrum of simulation requirements. In addition to its robust simulation capabilities, the interface incorporates exclusive model files from Microchip, enabling accurate modeling of specific Microchip analog components alongside standard circuit devices. This versatile simulation tool can be easily installed and operated on your local PC, ensuring that once it is downloaded, an Internet connection is unnecessary for its operation. Consequently, users benefit from quick and precise analog circuit simulations that do not rely on external servers, enhancing the overall efficiency of the design process. Users can confidently run simulations directly on their computers, experiencing the reliability and speed that comes with offline capabilities. -
7
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
8
Ansys HFSS
Ansys
Ansys HFSS is a versatile 3D electromagnetic (EM) simulation tool used for the design and analysis of high-frequency electronic devices such as antennas, interconnects, connectors, integrated circuits (ICs), and printed circuit boards (PCBs). This powerful software allows engineers to create and evaluate a wide range of high-frequency electronic products, including antenna arrays, RF and microwave components, and filters. Renowned among engineers globally, Ansys HFSS is essential for developing high-speed electronics utilized in various applications like communication systems, advanced driver assistance systems (ADAS), satellites, and Internet of Things (IoT) devices. The software's exceptional performance and precision empower engineers to tackle complex challenges related to RF, microwave, IC, PCB, and electromagnetic interference (EMI) issues. With a robust suite of solvers, Ansys HFSS effectively addresses a myriad of electromagnetic challenges, making it an indispensable resource in the field of electronic design. As technology progresses, the relevance of such simulation tools becomes increasingly critical in ensuring optimal performance in modern electronic systems. -
9
PathWave RFIC Design
Keysight Technologies
Advance your approach to RF simulation by focusing on the comprehensive design, analysis, and verification of radio frequency integrated circuits (RFICs). Gain assurance through the use of steady-state and nonlinear solvers for both design and verification processes. The availability of wireless standard libraries expedites the validation of intricate RFICs. Prior to finalizing an RFIC, it is essential to confirm IC specifications through RF simulation. These simulations take into account various factors such as layout parasitics, intricate modulated signals, and digital control circuitry. With PathWave RFIC Design, you can perform simulations in both frequency and time domains, facilitating seamless transitions between your designs and Cadence Virtuoso. Achieve accurate modeling of components on silicon chips, and enhance your designs using optimization techniques like sweeps and load-pull analysis. Integration of RF designs into the Cadence Virtuoso environment is streamlined, while the implementation of Monte Carlo and yield analysis can significantly boost performance. Additionally, debugging is made easier with safe operating area alerts, allowing for immediate utilization of cutting-edge foundry technology to stay at the forefront of innovation. This holistic approach to RFIC design not only improves efficiency but also elevates the overall quality and reliability of the final products. -
10
Ansys Exalto
Ansys
Ansys Exalto serves as an advanced post-LVS RLCk extraction software that empowers integrated circuit (IC) designers to effectively address unknown crosstalk between various components within the design hierarchy by extracting lumped-element parasitics and creating precise models for electrical, magnetic, and substrate coupling. This tool seamlessly integrates with a wide range of LVS software and can enhance the performance of any RC extraction tool you prefer. With Ansys Exalto's post-LVS RLCk extraction capabilities, IC designers are equipped to make accurate predictions regarding electromagnetic and substrate coupling effects, allowing for signoff on circuits that may have previously been deemed "too complex to analyze." The models that are extracted can be back-annotated to the schematic or netlist, ensuring compatibility with all circuit simulators. As the prevalence of RF and high-speed circuits continues to rise in contemporary silicon systems, electromagnetic coupling has become a primary factor that necessitates precise modeling to ensure the successful fabrication of silicon. Overall, Ansys Exalto represents a crucial advancement in circuit design, helping engineers navigate the complexities associated with modern electronic systems. -
11
TopSpice
TopSpice
$595 one-time paymentTopSpice is an advanced mixed-mode circuit simulator that operates seamlessly on PCs, combining analog, digital, and behavioral simulation capabilities. It stands out in its price category by providing a sophisticated SPICE simulator, a user-friendly integrated design environment that spans from schematic capture to graphical waveform analysis, and full 64-bit support for enhanced speed and expanded memory usage. Users have the flexibility to create designs through schematic diagrams, text-based netlist (SPICE) files, or a combination of both methods. All simulation and design functionalities are accessible through either the schematic or netlist editor interfaces, facilitating a versatile workflow. Additionally, TopSpice features a powerful mixed-mode mixed-signal circuit simulator that can handle any arbitrary mix of analog components, digital elements, and high-level behavioral blocks. With this software, users can efficiently validate and fine-tune their designs, ensuring optimal performance from the overall system down to individual transistors. Its comprehensive capabilities make it a valuable tool for engineers and designers seeking precision in their simulations. -
12
PrimeSim HSPICE
Synopsys
PrimeSim HSPICE circuit sim is the industry's standard for circuit simulation. It features foundry-certified MOS model models with state of the art simulation and analysis algorithms. HSPICE, with over 25 years of success in design tape outs and a comprehensive circuit simulator, is the industry's most trusted. On-chip simulation: analog designs, RF, custom digital, standard cell design and character, memory design and characterisation, device model development. For off-chip signal integrity simulation, silicon-to-package-to-board-to-backplane analysis and simulation. HSPICE is a key component of Synopsys analog/mixed signal (AMS) verification suite. It addresses the most important issues in AMS verification. HSPICE is the industry's standard for circuit simulation accuracy and offers MOS device models that have been foundry-certified. It also includes state-of-the art simulation and analysis algorithms. -
13
Ansys Pharos
Ansys
Pharos integrates Ansys' exceptional electromagnetic (EM) engine capabilities with a unique high-capacity circuit simulation engine, enabling comprehensive coupling analysis and the identification of potential EM crosstalk aggressors for each victim node. By pinpointing the most vulnerable nets, designers can strategically direct their design choices to mitigate EM crosstalk issues, thereby reducing risks throughout the design process. This tool not only has an extraordinary extraction engine but also features a built-in simulation component that facilitates in-depth EM analysis and categorizes potential crosstalk aggressors affecting each victim net. As a result, designers can concentrate on the nets that pose the highest risk within their designs. Given the increasing complexity of designs and the extensive range of magnetic field interference, it becomes a daunting challenge to identify every susceptible victim/aggressor net pair affected by EM crosstalk. Therefore, the effective use of Pharos can significantly enhance the reliability and efficiency of the design workflow. -
14
AWR Design Environment Platform
Cadence Design Systems
The Cadence AWR Design Environment Platform streamlines the development cycles of RF/microwave products through design automation, which boosts engineering efficiency and shortens turnaround times. This all-in-one platform equips engineers with sophisticated high-frequency circuit and system simulations alongside in-design electromagnetic (EM) and thermal analyses, enabling the creation of manufacturing-ready high-frequency intellectual property with exceptional accuracy and effectiveness. With a focus on enhancing productivity, the interface is both robust and user-friendly, featuring smart and customizable design workflows tailored to meet the demands of modern high-frequency semiconductor and PCB technologies. Moreover, its integrated design capture system supports a seamless front-to-back physical design process. The dynamic linking between electrical and layout design entries ensures that any components added to an electrical schematic automatically result in a corresponding synchronized physical layout, fostering a more cohesive design experience. This innovative approach not only minimizes errors but also significantly accelerates the overall design process. -
15
Microwave Office
Cadence Design Systems
Microwave Office facilitates the design of various RF passive components, including filters, couplers, and attenuators, along with active devices functioning under small-signal (AC) conditions, such as low noise and buffer amplifiers. Its linear configuration allows for the simulation of S-parameters (Y/Z/H/ABCD), small-signal gain, linear stability, noise figure, return loss, and voltage standing wave ratio (VSWR), complemented by features like real-time tuning, optimization, and yield analysis. Each E-series Microwave Office portfolio encompasses synchronous schematic and layout editors, 2D and 3D viewers, and extensive libraries featuring high-frequency distributed transmission models, as well as surface-mount vendor component RF models complete with footprints. Additionally, it offers measurement-based simulations and RF plotting capabilities. Microwave Office PCB further enhances the design process by enabling both linear and nonlinear RF circuit design through the advanced APLAC HB simulator, which provides powerful multi-rate HB, transient-assisted HB, and time-variant simulation engines for comprehensive RF/microwave circuit analysis. This extensive toolset empowers engineers to push the boundaries of RF design and streamline their development workflows effectively. -
16
CircuitLab
CircuitLab
$24 per yearThe Easy-wire mode simplifies the process of connecting components, reducing the number of clicks needed and minimizing user frustration. With unit-aware expression evaluation, you can easily visualize various signals of interest, including differential signals and power losses. The in-browser simulation and plotting tools enable quicker design and analysis, ensuring your circuit operates correctly even before you start soldering. Advanced simulation features offer options like frequency-domain (small signal) simulations, the ability to vary circuit parameters across a specified range, and integration of arbitrary Laplace transfer function blocks, among other capabilities. Handling multiple signals is made seamless with customizable plotting windows, along with vertical and horizontal markers for precise measurements and calculations. Additionally, you can easily create generic rectangular symbols for integrated circuits or system-level wiring diagrams with just a few effortless clicks, enhancing your overall design experience. This user-friendly approach allows engineers and designers to focus on creativity rather than get bogged down by complex processes. -
17
DCACLab
DCACLab
$9 per monthOur online circuit simulator effectively connects theoretical concepts with practical application through an easy-to-use interface. This platform enables users to create, simulate, and share electronic circuits in a digital environment, allowing them to observe the interaction of components in real time. By directly manipulating circuit behavior, learning becomes more dynamic and impactful. Educators benefit from DCACLab as it enriches their teaching methods with interactive diagrams and live demonstrations, while students gain a secure environment for experimentation and insight, fostering a profound grasp of electronics. With DCACLab, challenges transform into opportunities for hands-on learning and greater understanding. Experience the capabilities of a realistic multimeter within our interactive simulator, equipped to measure ohms, voltage, and resistance, thus providing a comprehensive and authentic educational experience. Explore the fascinating realm of electronics effortlessly and with clarity, making the journey as enjoyable as it is informative. -
18
EMWorks
EMWorks
EMWorks offers top-tier electromagnetic simulation software designed for electrical and electronics engineering, incorporating multiphysics features. Their solutions are fully integrated into SOLIDWORKS and Autodesk Inventor®, catering to a wide range of applications such as electromechanical systems, power electronics, antennas, RF and microwave components, as well as ensuring power and signal integrity in high-speed interconnects. One of their flagship products, EMS, serves as a powerful tool for simulating and optimizing electromagnetic and electromechanical devices like transformers, electric motors, actuators, and sensors within the SOLIDWORKS® and Autodesk® Inventor® environments. Additionally, EMWorks2D is a specialized 2D electromagnetic simulation software that focuses on planar and axis-symmetric geometries, also fully embedded in SOLIDWORKS, allowing users to perform quick simulations prior to transitioning to 3D models. This functionality not only enhances the design process but also accelerates overall product development, making it easier for engineers to refine their designs efficiently. By leveraging these advanced tools, users can achieve optimal performance in their electronic designs while saving valuable time in the engineering workflow. -
19
PROTO
PROTO
Explore the world of electronics through practical examples offered in the PROTO application, where a plethora of components like resistors, diodes, and transistors await your experimentation. Utilize the channel oscilloscope to observe and assess signals effortlessly, while monitoring voltages, currents, and various other parameters during simulations. Experience real-time circuit tuning with the multichannel oscilloscope, enhancing your projects with devices such as Raspberry Pi, Arduino, or ESP32. Additionally, PROTO serves as an effective tool for simulating logic circuits, enabling detailed digital electronic analysis and fostering a deeper understanding of electronic principles. This hands-on approach ensures that you not only learn but also apply your knowledge effectively. -
20
EveryCircuit
EveryCircuit
$15 one-time paymentAn animated circuit can convey more information than a thousand equations and charts combined. By superimposing animations of voltages, currents, and charges directly onto the schematic, users gain profound insights into how the circuit functions. The circuit simulation engine, designed specifically for optimal speed and interactive use, allows for seamless one-click simulations, catering to a wide range of components—from basic resistors and logic gates to intricate transistor-level oscillators and mixed-signal systems. During the simulation, users can manipulate switches, adjust potentiometers, modify LED current limiting resistors, and gradually increase input voltages, with the circuit instantly reflecting these alterations in real time. Distinctive mini-waveforms appear over schematic wires, differentiating between digital and analog signals, where constant analog voltages are displayed numerically and digital wires are color-coded for clarity. Additionally, any two time-domain signals can be illustrated in XY mode, enhancing the analytical capabilities. The oscilloscope's scale and grid ticks automatically adjust to optimal values as the data fluctuates, ensuring precise measurements throughout the simulation process. This dynamic feedback loop creates an engaging and educational experience for users looking to deepen their understanding of circuit behavior. -
21
XFdtd
Remcom
$14750.00/one-time/ user XFdtd is a comprehensive 3D electromagnetic simulation software developed by Remcom. This powerful and feature-rich solver for electromagnetic simulations delivers exceptional computing performance and eases the process of analyzing intricate electromagnetic challenges. The software supports various applications, including the design of microwave devices and antennas, as well as radar and scattering analysis. Additionally, XFdtd is utilized in biomedical fields, automotive radar systems, waveguide studies, military and defense projects, RFID technology, and electromagnetic compatibility/electromagnetic interference assessments, among others. Its versatility makes it an essential tool for engineers and researchers alike. -
22
SIMULIA
Dassault Systèmes
Utilizing the 3DEXPERIENCE® platform, SIMULIA provides advanced simulation tools that help users better understand and analyze our environment. The applications offered by SIMULIA streamline the assessment of material and product performance, reliability, and safety prior to the development of physical prototypes. These tools deliver robust simulations for various scenarios such as structures, fluids, multibody interactions, and electromagnetics, all while being seamlessly integrated with product data, even for complex assemblies. The comprehensive technology for modeling, simulation, and visualization is fully embedded within the 3DEXPERIENCE platform, which includes capabilities for process capture, publication, and reuse. By allowing simulation data, outcomes, and intellectual property to be linked to the platform, customers can maximize their current investment in simulation capabilities, transforming these assets into valuable resources that foster innovation for all users involved. This integration not only enhances workflow efficiency but also encourages collaborative advancements across different teams and projects. -
23
TINACloud
DesignSoft
$159 one-time paymentTINACloud is an online version of the well-known TINA software, available in multiple languages and accessible directly through your browser from anywhere in the world without needing any installation. Subscribing to TINACloud is significantly more affordable compared to the traditional TINA software, and those who acquire a license for the downloadable TINA program will benefit from a special bundle that includes TINACloud with all new private licenses of the downloadable version. This page focuses specifically on TINACloud, while more details about the offline TINA software, which can be installed on your personal computer, can be found elsewhere. As a robust online circuit simulator, TINACloud enables users to analyze and design a variety of circuits, including analog, digital, VHDL, Verilog, Verilog A, AMS, MCU, and mixed electronic circuits, as well as special applications in SMPS, RF, communication, and optoelectronics. Additionally, it provides the capability to test microcontroller applications within a mixed circuit environment, making it an invaluable tool for engineers and designers alike. -
24
Autodesk Fusion 360
Autodesk
$495 per yearFusion 360 seamlessly integrates design, engineering, electronics, and manufacturing into one cohesive software environment. It offers a comprehensive suite that combines CAD, CAM, CAE, and PCB capabilities within a single development platform. Additionally, users benefit from features like EAGLE Premium, HSMWorks, Team Participant, and various cloud-based services, including generative design and cloud simulation. With an extensive range of modeling tools, engineers can effectively design products while ensuring their form, fit, and function through multiple analysis techniques. Users can create and modify sketches using constraints, dimensions, and advanced sketching tools. It also allows for editing or fixing imported geometry from other file formats with ease. Design modifications can be made without concern for time-dependent features, enabling flexibility in the workflow. Furthermore, the software supports the creation of intricate parametric surfaces for tasks such as repairing or designing geometry, while history-based features like extrude, revolve, loft, and sweep dynamically adapt to any design alterations made. This versatility makes Fusion 360 an essential tool for modern engineering practices. -
25
CircuitLogix
Logic Design
$145 one-time paymentThis platform offers the opportunity to create and evaluate electronic circuits while exploring various hypothetical scenarios without the concern of defective components or poor connections. CircuitLogix accommodates analog, digital, and mixed-signal circuits, and its reliable SPICE simulation provides accurate results that reflect real-world performance. Furthermore, both variants of CircuitLogix come with 3DLab, a "virtual reality" lab environment that aims to closely mimic the look and functionality of genuine devices and instruments. Within 3DLab, users can access around 30 different tools and instruments, such as batteries, switches, meters, lamps, resistors, inductors, capacitors, fuses, oscilloscopes, logic analyzers, and frequency counters. This comprehensive array of resources allows for an immersive and engaging learning experience in electronic circuit design. -
26
LTspice
Analog Devices
FreeThe graphical schematic capture interface provides the ability to analyze schematics and generate simulation results, which can then be further examined using the integrated waveform viewer. A crucial aspect of circuit design is the speed at which one can comprehend the circuit, verifying its accuracy and identifying its constraints. LTspice excels compared to numerous other simulation tools, allowing for rapid iterations of your designs. Additionally, keyboard shortcuts offer an efficient alternative to accessing commands in LTspice that would typically require navigating through the menu or toolbar. Our comprehensive library of technical resources covers a diverse array of LTspice subjects, including guidance on using transformers, incorporating third-party models, and creating and managing symbols. Furthermore, these resources aim to enhance your overall understanding and proficiency with the software. -
27
samadii/em
Metariver Technology Co.,Ltd
samadii/em oftware that analyzes and calculates the electromagnetic field in 3d space using the Maxwell equation using vector FEM ad GPU computing. it provides electrostatics, magnetostatics as well and induction electronics, including the low-frequency and high-frequency ranges. samadii/em provides a multi-physics approach and high-performance electromagnetics simulation, with Samadii you can quickly address problems from semiconductors and displays to wireless communications, etc. -
28
In today's fast-paced business environment, companies encounter intricate design obstacles while managing limited budgets. eCADSTAR transcends being just a PCB layout tool, as it integrates simulation, 3D MCAD capabilities, and wire harness support, all harnessed through cutting-edge technology that offers enterprise-level performance at a budget-friendly price point. Its user-friendly interface makes eCADSTAR an attractive choice for designers of all levels. By utilizing eCADSTAR’s robust design features, teams can streamline and expedite the overall design workflow. The software includes a digitally connected library and intuitive schematic capture, allowing PCB layout engineers to focus more on innovation and less on tool manipulation. Among the various stages of the design process, developing a test plan can be particularly labor-intensive. Without proper upfront simulation, the validation phase can lead to significant time and financial expenditures, but eCADSTAR addresses this challenge with its advanced capabilities in Spice simulation and SI/PI analysis, resulting in reduced test cycle times and increased efficiency overall. Ultimately, eCADSTAR stands out as a powerful ally for engineers striving to navigate the complexities of modern design.
-
29
Cadence Clarity 3D Solver
Cadence
The Cadence Clarity 3D Solver is a sophisticated software tool designed for 3D electromagnetic simulation, specifically aimed at creating essential interconnects for printed circuit boards, integrated circuit packages, and systems integrated on chip designs. This powerful tool assists engineers in overcoming intricate electromagnetic issues encountered in the development of systems for advanced technologies such as 5G, automotive applications, high-performance computing, and machine learning, all while ensuring top-tier accuracy. Leveraging Cadence’s state-of-the-art distributed multiprocessing capabilities, the Clarity 3D Solver provides virtually limitless capacity and enhances processing speed by tenfold, making it possible to tackle extensive and complicated structures with ease. Additionally, it generates precise S-parameter models that cater to high-speed signal integrity, power integrity, high-frequency RF/microwave applications, and electromagnetic compliance assessments, ensuring that simulation outcomes align closely with laboratory measurements, even for data transfer rates exceeding 112Gbps. Consequently, this tool stands as a vital asset for engineers looking to push the boundaries of technology in their designs. -
30
OptSim
Synopsys
Synopsys OptSim stands out as a highly acclaimed simulator for photonic integrated circuits (PICs) and fiber-optic systems, empowering engineers to effectively design and refine photonic circuits and associated systems. With its cutting-edge algorithms for both time and frequency domains, it provides a dedicated photonic environment that ensures precise simulation results. OptSim can operate independently, complete with its own graphical user interface, or be integrated within the OptoCompiler Photonic IC design platform for enhanced functionality. When combined with OptoCompiler, it allows for electro-optic co-simulation alongside Synopsys PrimeSim HSPICE and PrimeSim SPICE electrical circuit simulators, offering a seamless experience with the PrimeWave Design Environment that facilitates advanced simulations, analyses, and visualizations, including parametric scans and Monte Carlo methods. Additionally, the software is equipped with a comprehensive array of libraries containing photonic and electronic components, as well as various analysis tools, and is compatible with a wide range of foundry process design kits (PDKs), making it an invaluable resource for engineers in the field. Its versatility and depth of features make Synopsys OptSim a crucial tool for anyone involved in photonic design. -
31
CST Studio Suite
Dassault Systèmes
CST Studio Suite is an advanced 3D electromagnetic (EM) analysis software designed to facilitate the design, assessment, and optimization of various electromagnetic components and systems. It offers a unified user interface that houses solvers for a diverse range of applications spanning the entire electromagnetic spectrum. These solvers can be integrated to conduct hybrid simulations, providing engineers the versatility to efficiently analyze complex systems composed of multiple components. Furthermore, collaboration with other SIMULIA products enhances the capability for EM simulation to be seamlessly incorporated into the overall design process, influencing development from the initial phases. Typical applications of EM analysis include evaluating antenna and filter performance, ensuring electromagnetic compatibility and interference compliance, assessing human exposure to EM fields, analyzing electro-mechanical interactions in motors and generators, and studying thermal impacts on high-power devices. The ability to conduct such comprehensive analyses helps drive innovation in various industries that rely on electromagnetic technology. -
32
Altair PSIM
Altair
For more than 25 years, PSIM has established itself as a premier software for simulating and designing power electronics and motor drives. Boasting an easy-to-navigate interface alongside a powerful simulation engine, PSIM serves as a comprehensive solution tailored to fulfill the simulation and design requirements of its users. It efficiently performs rapid calculations for power converter losses and motor drive efficiencies, while also conducting EMI analysis and managing both analog and digital control systems. Furthermore, PSIM streamlines the process of rapid control prototyping through its automatic embedded code generation feature. With its diverse range of Design Suites, users can swiftly and conveniently develop power supplies, EMI filters, and motor drive systems, making PSIM a versatile tool for engineers in the field. The software's ability to adapt to various design needs further solidifies its reputation as an essential asset in the power electronics industry. -
33
Ansys Maxwell
Ansys
Ansys Maxwell serves as a powerful electromagnetic field solver tailored for electric machines, transformers, wireless charging systems, permanent magnet latches, actuators, and various electromechanical devices. It adeptly addresses the challenges of static, frequency-domain, and time-varying electric and magnetic fields. Additionally, Maxwell comes equipped with specialized design interfaces specifically for electric machines and power converters. With the capabilities of Maxwell, users can accurately analyze the nonlinear and transient behaviors of electromechanical components, as well as their impact on drive circuits and control system designs. By utilizing Maxwell’s state-of-the-art electromagnetic field solvers in conjunction with integrated circuit and systems simulation technologies, engineers can gain insights into the performance of electromechanical systems well before any physical prototypes are created. Moreover, Maxwell is recognized for delivering reliable simulations of low-frequency electromagnetic fields pertinent to industrial components, making it a valuable tool in the design and analysis process. This comprehensive approach not only enhances design efficiency but also aids in minimizing potential issues during the development stage. -
34
SIMetrix/SIMPLIS
SIMPLIS Technologies
This tool seamlessly merges precision and efficiency within a comprehensive design framework, achieving simulation speeds that are 10-50 times quicker than SPICE for power supply designs. It encompasses all functionalities of SIMetrix Classic while maintaining the same graphical user interface, which includes a hierarchical schematic editor and a waveform viewer. It quickly identifies the steady state operating point of a switching system, eliminating the need to simulate initial transient conditions. Furthermore, it facilitates the conversion of SPICE transistor and diode models into SIMPLIS format by executing a SPICE simulation for parameter extraction. The advanced digital simulation library boasts a diverse array of digital functions, including counters, ADCs, DACs, and much more, ensuring that designers have the tools they need at their fingertips. This integration of features makes it an invaluable asset for anyone involved in power supply design and simulation. -
35
Intel Quantum Simulator
Intel Quantum Simulator
The framework is built on a thorough depiction of the qubit state while steering clear of directly illustrating gates and various quantum processes through matrices. To facilitate communication among the distributed resources involved in storing and processing quantum states, Intel-QS employs the MPI (message-passing-interface) protocol. Designed as a shared library, Intel-QS integrates seamlessly with application programs, enabling users to leverage its high-performance capabilities for circuit simulations. This library can be compiled on a wide range of systems, encompassing everything from personal laptops to high-performance computing server infrastructures. Additionally, this flexibility ensures that developers can tailor their solutions to meet the specific demands of their quantum computing projects. -
36
RFPro Circuit
Keysight
Advance your RF simulation capabilities to effectively design, analyze, and verify radio frequency integrated circuits (RFICs) beyond conventional methods. Gain assurance through the use of steady-state and nonlinear solvers tailored for both design and verification processes. Accelerate the validation of intricate RFICs with wireless standard libraries designed for efficiency. Ensure precise modeling of components on silicon chips to achieve optimal accuracy. Enhance your designs using load-pull analysis and parameter sweeps for better performance outcomes. Conduct RF simulations within the Cadence Virtuoso and Synopsys Custom Compiler environments to streamline your workflow. Employ Monte Carlo simulations and yield analysis to further boost performance metrics. Early in the design phase, evaluate error vector magnitude (EVM) in alignment with the latest communication standards to ensure compliance. Leverage cutting-edge foundry technology right from the start of your project. It is essential to monitor specifications like EVM through RF simulation during the early stages of RFIC design. The simulations account for the effects of layout parasitics, intricate modulated signals, and digital control circuitry. Utilizing Keysight RFPro Circuit allows for comprehensive simulation in both frequency and time domains, enhancing the overall design process and accuracy. This multifaceted approach ensures that your RFICs not only meet but exceed industry standards. -
37
ZW3D
ZWSOFT
Hole & 2-Axis Tactics can significantly reduce programming times by up to 70% by automatically generating toolpaths that are ready for manufacturing. With over 40 types of machining operations at your disposal, you can efficiently tackle any manufacturing project with confidence. Whether you're working with Nurbs or STL geometries, creating the desired toolpaths—including undercut options—is a straightforward process. The 5-axis milling system offers a comprehensive approach for both indexing and 4 to 5-axis machining, while also being compatible with STL files. A wide range of advanced functions such as Swarf, Drive Curve, Drive Surface, Flow Cut, Side Cut, and Point Control are included to enhance machining versatility in various situations. Additionally, a suite of verification and simulation tools ensures that the machining process is feasible, reliable, and safe. For instance, Solid Verify allows users to simulate the actual machining to assess material excess, ensuring that the machining is not only effective but also efficient, leading to superior production outcomes. Moreover, this combination of tools and functionalities helps optimize the entire manufacturing workflow, making it easier to achieve high-quality results consistently. -
38
Simulink
MathWorks
$860 per yearDevelop and test your system using Simulink prior to implementing it on actual hardware. This allows you to explore and apply innovative designs that might typically be overlooked, all without the need to engage in C, C++, or HDL programming. By modeling both the system you are testing and the physical plant, you can investigate a broader design landscape. Your entire team can benefit from a unified multi-domain platform that simulates the interactions of all system components. You can also package and share your simulation results with team members, suppliers, and clients for collaborative feedback. This approach helps minimize costly prototypes by allowing you to experiment with scenarios that might otherwise be deemed too risky or impractical. Use hardware-in-the-loop testing and rapid prototyping to confirm your design's effectiveness. With this method, you can ensure traceability throughout the process, from requirements gathering to design and code development. Rather than manually crafting thousands of lines of code, you can automatically generate high-quality C and HDL code that mirrors your original Simulink model. Finally, deploy this code directly onto your embedded processor or FPGA/ASIC for seamless integration and operation. This comprehensive approach not only streamlines development but also enhances overall project efficiency. -
39
PathWave System Design
Keysight Technologies
Elevate your design approach beyond traditional mathematical modeling with a comprehensive RF-aware workflow, enhanced by decades of expertise in RF instrumentation from Keysight, tailored for system architects. PathWave System Design presents an unparalleled platform for prototyping and designing intricate RF systems, boasting rapid simulation capabilities, high fidelity near-circuit accuracy, and extensive libraries tailored for radar, electronic warfare, satellite communication, 5G, and WiFi, along with seamless enterprise integration through a variety of partnerships. While statistical models for channel and propagation provide a foundation, they have limitations in advancing your design efforts. The use of dynamic kinematic modeling opens new avenues for radar, electronic warfare, satellite technologies, 5G, and automotive applications, particularly through integration with tools like STK from AGI, an Ansys Company. Additionally, professionals developing advanced cellular systems require reliable reference libraries grounded in Keysight’s measurement science to ensure accuracy and performance. Furthermore, those engaged in pioneering the next generation of communication signals will benefit from a versatile platform that supports both physical layer development and rigorous testing, facilitating innovation in a rapidly evolving field. -
40
NL5 Circuit Simulator
Sidelinesoft
$500 one-time paymentNumerous circuit simulators exist in the marketplace today. Their advertisements boast about high performance, remarkable speed, being industry-standard (such as SPICE), and being user-friendly with a highly intuitive interface. To determine the effectiveness of a tool, it’s best to try it out for yourself, which is exactly what many users of NL5 have done. I look forward to hearing the positive feedback they will likely share soon. It’s important to note what to anticipate from NL5: it is not just another variation of SPICE, nor can it be considered a direct substitute. In certain applications, NL5 demonstrates significant advantages, while in others it performs adequately, and there are some areas where it may not be suitable at all. Ultimately, the versatility of NL5 makes it a compelling option for specific tasks within circuit simulation. -
41
Quantum Programming Studio
Quantum Programming Studio
The circuit can be exported to several quantum programming languages and frameworks, allowing execution on a variety of simulators and quantum computers. Users can easily create circuit diagrams using a straightforward drag-and-drop interface, which seamlessly converts the diagram into code; conversely, entering code will update the diagram in real-time. The QPS Client operates on your local device or in a cloud environment where your quantum programming setup is established. It establishes a secure websocket connection with the Quantum Programming Studio server, enabling the execution of quantum circuits that you design through the web interface on either a local simulator or an actual quantum computer. This flexibility ensures that users can efficiently design and test their quantum algorithms in a versatile environment. -
42
Flux
Flux
$7 per user per monthReal-time collaboration, a simple simulator and forkable community content make it easier to build hardware more efficiently. Modern sharing, permissions and an easy-to use version control system allow you to harness collective intelligence. We believe in open-source. Flux's ever-growing library of schematics and parts makes it easy to get started quickly. Finally, a programmable simulation that doesn't require a PHD. You can view your schematic online before you start building. Flux is the place to go for great hardware projects, no matter if you're designing hardware for the next Mars mission or a simple circuit board. Flux is a browser-based, end-to-end electronic design platform that breaks down all barriers. Flux is doing something new and we're doing it in a unique way. It's called building openly. Join our community of makers, engineers, and entrepreneurs who are passionately interested in improving hardware design tools. -
43
OptoCompiler
Synopsys
Synopsys OptoCompiler stands out as the first comprehensive design platform in the industry that seamlessly integrates electronic and photonic design capabilities. This innovative solution merges advanced photonic technology with Synopsys' proven electronic design tools, allowing engineers to efficiently and accurately create and validate intricate designs for photonic integrated circuits. By offering a schematic-driven layout alongside sophisticated photonic layout synthesis within a single interface, OptoCompiler effectively connects photonic specialists with integrated circuit designers, thereby enhancing the accessibility, speed, and flexibility of photonic design processes. The platform's support for electronic-photonic co-design ensures scalable methodologies, while its robust features for hierarchical design facilitate collaboration among multiple designers, significantly reducing product development timelines. Additionally, OptoCompiler is equipped with specialized native photonic simulators that work in tandem with widely recognized electrical simulators, delivering precise simulation results that account for variations in statistical data. This combination of features makes OptoCompiler a pivotal tool for advancing the field of integrated photonic design. -
44
Ansys Nuhertz FilterSolutions offers a streamlined and efficient process for the automated design, synthesis, and optimization of RF, microwave, and digital filters. The process begins with inputting the desired performance specifications, after which it synthesizes both lumped component designs and physical layouts while automatically configuring analysis and optimization within the Ansys HFSS electromagnetic simulator. This innovative solution significantly accelerates the development of lumped element (surface mount) and planar filters. Additionally, it incorporates synthesis tools for various filter types, including active, switched capacitor, and digital filters. Users can export the netlist of active filters in SPICE format, and the digital filter synthesis module allows for the generation of C-code for the resulting filters. Overall, Ansys Nuhertz FilterSolutions enhances efficiency and versatility in filter design, making it a valuable tool for engineers.
-
45
Autodesk EAGLE
Autodesk
$60 per monthEAGLE is a powerful electronic design automation (EDA) tool that empowers printed circuit board (PCB) designers to effortlessly integrate schematic diagrams, component placement, PCB routing, and a comprehensive library of resources. With EAGLE, you can elevate your design process through an extensive array of PCB layout tools. The software allows you to easily drag and drop reusable design blocks across different projects while ensuring that schematic and PCB circuitry remain synchronized. You can validate your schematic designs using a complete suite of electronic rule checks, ensuring that your designs adhere to specifications. The automatic synchronization of changes between your schematic and layout enables you to concentrate on the creative aspects of your work. Additionally, the design flow is fully controllable, allowing you to avoid unforeseen issues with customizable PCB design rules and constraints. The worry-free libraries are prepared for your next project, enabling you to dynamically find and place parts that are linked to an ever-expanding catalog. This integration of tools and features makes EAGLE an invaluable asset for designers striving for efficiency and precision in their PCB projects.