Best Data Science Software for TensorFlow

Find and compare the best Data Science software for TensorFlow in 2024

Use the comparison tool below to compare the top Data Science software for TensorFlow on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
  • 2
    Qloo Reviews
    Top Pick
    See Software
    Learn More
    Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
  • 3
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 4
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 5
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 6
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 7
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 8
    Azure Data Science Virtual Machines Reviews
    DSVMs are Azure Virtual Machine Images that have been pre-configured, configured, and tested with many popular tools that are used for data analytics and machine learning. A consistent setup across the team promotes collaboration, Azure scale, management, Near-Zero Setup and full cloud-based desktop to support data science. For one to three classroom scenarios or online courses, it is easy and quick to set up. Analytics can be run on all Azure hardware configurations, with both vertical and horizontal scaling. Only pay for what you use and when you use it. Pre-configured Deep Learning tools are readily available in GPU clusters. To make it easy to get started with the various tools and capabilities, such as Neural Networks (PYTorch and Tensorflow), templates and examples are available on the VMs. ), Data Wrangling (R, Python, Julia and SQL Server).
  • 9
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 10
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 11
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 12
    HPE Ezmeral Reviews

    HPE Ezmeral

    Hewlett Packard Enterprise

    Manage, control, secure, and manage the apps, data, and IT that run your business from edge to cloud. HPE Ezmeral accelerates digital transformation initiatives by shifting resources and time from IT operations to innovation. Modernize your apps. Simplify your operations. You can harness data to transform insights into impact. Kubernetes can be deployed at scale in your data center or on the edge. It integrates persistent data storage to allow app modernization on baremetal or VMs. This will accelerate time-to-value. Operationalizing the entire process to build data pipelines will allow you to harness data faster and gain insights. DevOps agility is key to machine learning's lifecycle. This will enable you to deliver a unified data network. Automation and advanced artificial intelligence can increase efficiency and agility in IT Ops. Provide security and control to reduce risk and lower costs. The HPE Ezmeral Container Platform is an enterprise-grade platform that deploys Kubernetes at large scale for a wide variety of uses.
  • 13
    Fosfor Decision Cloud Reviews
    You will find everything you need to improve your business decisions. The Fosfor Decision Cloud integrates the modern data ecosystem in order to deliver the long-sought promise that AI can bring: enhanced business outcomes. The Fosfor Decision Cloud combines the components of your data into a modern, decision stack that is designed to increase business outcomes. Fosfor collaborates seamlessly with partners to create a modern decision stack that delivers unprecedented value for your data investments.
  • 14
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 15
    IBM SPSS Modeler Reviews
    IBM SPSS Modeler, a leading visual data-science and machine-learning (ML) solution, is designed to help enterprises accelerate their time to value through the automation of operational tasks by data scientists. It is used by organizations around the world for data preparation, discovery, predictive analytics and model management and deployment. ML is also used to monetize data assets. IBM SPSS Modeler transforms data in the best possible format for accurate predictive modeling. You can now analyze data in just a few clicks, identify fixes, screen fields out and derive new characteristics. IBM SPSS Modeler uses its powerful graphics engine to help you bring your insights to life. The smart chart recommender will select the best chart from dozens of options to share your insights.
  • Previous
  • You're on page 1
  • Next