Best Data Management Software for TensorFlow

Find and compare the best Data Management software for TensorFlow in 2025

Use the comparison tool below to compare the top Data Management software for TensorFlow on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Qloo Reviews
    Top Pick
    See Software
    Learn More
    Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
  • 2
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 3
    Dataiku Reviews
    Dataiku provides a powerful AI platform that helps organizations harness the potential of data science and machine learning by enabling teams to collaborate on AI-driven projects. With a flexible user interface that supports both no-code and code-based workflows, Dataiku allows users to streamline data preparation, build models using AutoML, and deploy solutions across diverse environments. The platform supports advanced capabilities like generative AI and AI governance, making it suitable for enterprises seeking scalable and secure AI solutions across various business functions.
  • 4
    Vertex AI Reviews
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 5
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 6
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 7
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 8
    Azure Data Science Virtual Machines Reviews
    DSVMs are Azure Virtual Machine Images that have been pre-configured, configured, and tested with many popular tools that are used for data analytics and machine learning. A consistent setup across the team promotes collaboration, Azure scale, management, Near-Zero Setup and full cloud-based desktop to support data science. For one to three classroom scenarios or online courses, it is easy and quick to set up. Analytics can be run on all Azure hardware configurations, with both vertical and horizontal scaling. Only pay for what you use and when you use it. Pre-configured Deep Learning tools are readily available in GPU clusters. To make it easy to get started with the various tools and capabilities, such as Neural Networks (PYTorch and Tensorflow), templates and examples are available on the VMs. ), Data Wrangling (R, Python, Julia and SQL Server).
  • 9
    LeanXcale Reviews

    LeanXcale

    LeanXcale

    $0.127 per GB per month
    LeanXcale is fast and scalable database that combines SQL and NoSQL. It can ingest large batches of data and make it available via SQL or GIS for any purpose, including operational applications, analytics and dashboarding. No matter which stack you use, LeanXcale offers both SQL and NoSQL interfaces. The KiVi storage engine can be used as a relational key/value data store. The data can be accessed via the standard SQL API or a direct ACID key/value interface. This key-value interface allows users data ingestion at extremely high rates and efficiently, while avoiding SQL processing overhead. High-scalable, efficient, and distributed storage engine distributed data along a cluster to improve performance and increase reliability.
  • 10
    GigaSpaces Reviews
    Smart DIH is a data management platform that quickly serves applications with accurate, fresh and complete data, delivering high performance, ultra-low latency, and an always-on digital experience. Smart DIH decouples APIs from SoRs, replicating critical data, and making it available using event-driven architecture. Smart DIH enables drastically shorter development cycles of new digital services, and rapidly scales to serve millions of concurrent users – no matter which IT infrastructure or cloud topologies it relies on. XAP Skyline is a distributed in-memory development platform that delivers transactional consistency, combined with extreme event-based processing and microsecond latency. The platform fuels core business solutions that rely on instantaneous data, including online trading, real-time risk management and data processing for AI and large language models.
  • 11
    neptune.ai Reviews

    neptune.ai

    neptune.ai

    $49 per month
    Neptune.ai, a platform for machine learning operations, is designed to streamline tracking, organizing and sharing of experiments, and model-building. It provides a comprehensive platform for data scientists and machine-learning engineers to log, visualise, and compare model training run, datasets and hyperparameters in real-time. Neptune.ai integrates seamlessly with popular machine-learning libraries, allowing teams to efficiently manage research and production workflows. Neptune.ai's features, which include collaboration, versioning and reproducibility of experiments, enhance productivity and help ensure that machine-learning projects are transparent and well documented throughout their lifecycle.
  • 12
    Mona Reviews
    Mona is a flexible and intelligent monitoring platform for AI / ML. Data science teams leverage Mona’s powerful analytical engine to gain granular insights about the behavior of their data and models, and detect issues within specific segments of data, in order to reduce business risk and pinpoint areas that need improvements. Mona enables tracking custom metrics for any AI use case within any industry and easily integrates with existing tech stacks. In 2018, we ventured on a mission to empower data teams to make AI more impactful and reliable, and to raise the collective confidence of business and technology leaders in their ability to make the most out of AI. We have built the leading intelligent monitoring platform to provide data and AI teams with continuous insights to help them reduce risks, optimize their operations, and ultimately build more valuable AI systems. Enterprises in a variety of industries leverage Mona for NLP/NLU, speech, computer vision, and machine learning use cases. Mona was founded by experienced product leaders from Google and McKinsey&Co, is backed by top VCs, and is HQ in Atlanta, Georgia. In 2021, Mona was recognized by Gartner as a Cool Vendor in AI Operationalization and Engineering.
  • 13
    HStreamDB Reviews
    A streaming database is designed to store, process, analyze, and ingest large data streams. It is a modern data infrastructure which unifies messaging, stream processing and storage to help you get the most out of your data in real time. Massive amounts of data are continuously ingested from many sources, including IoT device sensor sensors. A specially designed distributed streaming data storage cluster can store millions of data streams securely. Subscribe to HStreamDB topics to access data streams in real time as fast as Kafka. You can access and playback data streams at any time thanks to the permanent stream storage. Data streams can be processed based on event-time using the same SQL syntax that you use to query relational databases. SQL can be used to filter, transform and aggregate multiple data streams.
  • 14
    Deep Lake Reviews

    Deep Lake

    activeloop

    $995 per month
    We've been working on Generative AI for 5 years. Deep Lake combines the power and flexibility of vector databases and data lakes to create enterprise-grade LLM-based solutions and refine them over time. Vector search does NOT resolve retrieval. You need a serverless search for multi-modal data including embeddings and metadata to solve this problem. You can filter, search, and more using the cloud, or your laptop. Visualize your data and embeddings to better understand them. Track and compare versions to improve your data and your model. OpenAI APIs are not the foundation of competitive businesses. Your data can be used to fine-tune LLMs. As models are being trained, data can be efficiently streamed from remote storage to GPUs. Deep Lake datasets can be visualized in your browser or Jupyter Notebook. Instantly retrieve different versions and materialize new datasets on the fly via queries. Stream them to PyTorch, TensorFlow, or Jupyter Notebook.
  • 15
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    Yandex Data Proc creates and configures Spark clusters, Hadoop clusters, and other components based on the size, node capacity and services you select. Zeppelin Notebooks and other web applications can be used to collaborate via a UI Proxy. You have full control over your cluster, with root permissions on each VM. Install your own libraries and applications on clusters running without having to restart. Yandex Data Proc automatically increases or decreases computing resources for compute subclusters according to CPU usage indicators. Data Proc enables you to create managed clusters of Hive, which can reduce failures and losses due to metadata not being available. Save time when building ETL pipelines, pipelines for developing and training models, and describing other iterative processes. Apache Airflow already includes the Data Proc operator.
  • 16
    ApertureDB Reviews

    ApertureDB

    ApertureDB

    $0.33 per hour
    Vector search can give you a competitive edge. Streamline your AI/ML workflows, reduce costs and stay ahead with up to a 10x faster time-to market. ApertureDB’s unified multimodal management of data will free your AI teams from data silos and allow them to innovate. Setup and scale complex multimodal infrastructure for billions objects across your enterprise in days instead of months. Unifying multimodal data with advanced vector search and innovative knowledge graph, combined with a powerful querying engine, allows you to build AI applications at enterprise scale faster. ApertureDB will increase the productivity of your AI/ML team and accelerate returns on AI investment by using all your data. You can try it for free, or schedule a demonstration to see it in action. Find relevant images using labels, geolocation and regions of interest. Prepare large-scale, multi-modal medical scanning for ML and Clinical studies.
  • 17
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 18
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 19
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 20
    teX.ai Reviews
    Your business can quickly identify, identify, and process only the text that is relevant to it, given the volume of content. Regardless of your business's needs, operational agility and faster decisions, obtaining customer insight or more, teXai is a Forbes-recognized text analytics company that helps you use text to propel your business forward. The powerful preprocessor engine of teXai can identify and extract objects of interest from any document in your organization's emails or text messages. It can also be used to analyze tables, emails, text messages and archives. The intelligent, customizable linguistic application recognizes text genres, groups, and similar content. It creates concise summaries to help business teams get the right context from the correct text. The text analytics software extracts key elements from your text and simplifies decision-making.
  • 21
    Cloudera Data Platform Reviews
    The only hybrid data platform that supports modern data architectures and data anywhere. Cloudera is an open-source hybrid data platform that allows you to choose any cloud, any analytics and any data. Cloudera provides faster and easier data analytics and management for data anywhere with optimal performance, scalability and security. Cloudera gives you all the benefits of both private and public clouds for a faster time to value, and greater IT control. Cloudera allows you to move data, applications and users in both directions between your data center and multiple clouds, no matter where the data resides.
  • 22
    Feast Reviews
    Your offline data can be used to make real-time predictions, without the need for custom pipelines. Data consistency is achieved between offline training and online prediction, eliminating train-serve bias. Standardize data engineering workflows within a consistent framework. Feast is used by teams to build their internal ML platforms. Feast doesn't require dedicated infrastructure to be deployed and managed. Feast reuses existing infrastructure and creates new resources as needed. You don't want a managed solution, and you are happy to manage your own implementation. Feast is supported by engineers who can help with its implementation and management. You are looking to build pipelines that convert raw data into features and integrate with another system. You have specific requirements and want to use an open-source solution.
  • 23
    MLReef Reviews
    MLReef allows domain experts and data scientists secure collaboration via a hybrid approach of pro-code and no-code development. Distributed workloads lead to a 75% increase in productivity. This allows teams to complete more ML project faster. Domain experts and data scientists can collaborate on the same platform, reducing communication ping-pong to 100%. MLReef works at your location and enables you to ensure 100% reproducibility and continuity. You can rebuild all work at any moment. To create interoperable, versioned, explorable AI modules, you can use git repositories that are already well-known. Your data scientists can create AI modules that you can drag and drop. These modules can be modified by parameters, ported, interoperable and explorable within your organization. Data handling requires a lot of expertise that even a single data scientist may not have. MLReef allows your field experts to assist you with data processing tasks, reducing complexity.
  • 24
    Tausight Reviews
    Tausight's Healthcare Data Security Platform is trained with a patented algorithm that detects ePHI in devices, data stores, and cloud assets. The result is powerful insight into how PHI is accessed, how it is traveling, and whether it is at risk. Tausight was designed to fit in the unique, decentralized healthcare environments. API integrations allow automated protection of vulnerable PHI. Tausight’s cloud deployment and lightweight sensor are easy to install in minutes. This allows you to discover ePHI within 60 minutes.
  • 25
    Weights & Biases Reviews
    Weights & Biases allows for experiment tracking, hyperparameter optimization and model and dataset versioning. With just 5 lines of code, you can track, compare, and visualise ML experiments. Add a few lines of code to your script and you'll be able to see live updates to your dashboard each time you train a different version of your model. Our hyperparameter search tool is scalable to a massive scale, allowing you to optimize models. Sweeps plug into your existing infrastructure and are lightweight. Save all the details of your machine learning pipeline, including data preparation, data versions, training and evaluation. It's easier than ever to share project updates. Add experiment logging to your script in a matter of minutes. Our lightweight integration is compatible with any Python script. W&B Weave helps developers build and iterate their AI applications with confidence.
  • Previous
  • You're on page 1
  • 2
  • Next