Best Data Management Software for iDiscover

Find and compare the best Data Management software for iDiscover in 2024

Use the comparison tool below to compare the top Data Management software for iDiscover on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Software
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 2
    Amazon DynamoDB Reviews
    Amazon DynamoDB, a key-value and document databank, delivers single-digit millisecond performance on any scale. It is a fully managed, multiregional, multimaster, durable database that offers built-in security, backup, restore, and in-memory cache for internet-scale apps. DynamoDB can process more than 10 trillion requests per hour and can handle peak requests of more than 20,000,000 requests per second. Many of the fastest-growing businesses in the world, such as Lyft, Redfin, and Airbnb, as well as enterprises like Samsung, Toyota and Capital One, rely on DynamoDB's scale and performance to support mission-critical workloads.
  • 3
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 4
    MySQL Reviews
    MySQL is the most widely used open-source database in the world. MySQL is the most popular open source database for web-based applications. It has been proven to be reliable, performant, and easy-to-use. This database is used by many high-profile web properties, including Facebook, Twitter and YouTube. It is also a popular choice for embedded databases, distributed by thousands ISVs and OEMs.
  • 5
    MongoDB Reviews
    Top Pick
    MongoDB is a distributed database that supports document-based applications and is designed for modern application developers. No other database is more productive. Our flexible document data model allows you to ship and iterate faster and provides a unified query interface that can be used for any purpose. No matter if it's your first customer, or 20 million users worldwide, you can meet your performance SLAs in every environment. You can easily ensure high availability, data integrity, and meet compliance standards for mission-critical workloads. A comprehensive suite of cloud database services that allows you to address a wide range of use cases, including transactional, analytical, search, and data visualizations. Secure mobile apps can be launched with native, edge to-cloud sync and automatic conflicts resolution. MongoDB can be run anywhere, from your laptop to the data center.
  • 6
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 7
    SQL Server Reviews
    Microsoft SQL Server 2019 includes intelligence and security. You get more without paying extra, as well as best-in-class performance for your on-premises requirements. You can easily migrate to the cloud without having to change any code. Azure makes it easier to gain insights and make better predictions. You can use the technology you choose, including open-source, and Microsoft's innovations to help you develop. Integrate data into your apps easily and access a rich set cognitive services to build human-like intelligence on any data scale. AI is built into the data platform, so you can get insights faster from all of your data, both on-premises or in the cloud. To build an intelligence-driven company, combine your enterprise data with the world's data. You can build your apps anywhere with a flexible platform that offers a consistent experience across platforms.
  • 8
    Amazon Redshift Reviews

    Amazon Redshift

    Amazon

    $0.25 per hour
    Amazon Redshift is preferred by more customers than any other cloud data storage. Redshift powers analytic workloads for Fortune 500 companies and startups, as well as everything in between. Redshift has helped Lyft grow from a startup to multi-billion-dollar enterprises. It's easier than any other data warehouse to gain new insights from all of your data. Redshift allows you to query petabytes (or more) of structured and semi-structured information across your operational database, data warehouse, and data lake using standard SQL. Redshift allows you to save your queries to your S3 database using open formats such as Apache Parquet. This allows you to further analyze other analytics services like Amazon EMR and Amazon Athena. Redshift is the fastest cloud data warehouse in the world and it gets faster each year. The new RA3 instances can be used for performance-intensive workloads to achieve up to 3x the performance compared to any cloud data warehouse.
  • 9
    SAP HANA Reviews
    SAP HANA is an in-memory database with high performance that accelerates data-driven decision-making and actions. It supports all workloads and provides the most advanced analytics on multi-model data on premise and in cloud.
  • 10
    Apache HBase Reviews

    Apache HBase

    The Apache Software Foundation

    Apache HBase™, is used when you need random, real-time read/write access for your Big Data. This project aims to host very large tables, billions of rows and X million columns, on top of clusters of commodity hardware.
  • 11
    PostgreSQL Reviews

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL, a powerful open-source object-relational database system, has over 30 years of experience in active development. It has earned a strong reputation for reliability and feature robustness.
  • 12
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 13
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 14
    Teradata QueryGrid Reviews
    Multiple analytic engines can lead to best-fit engineering. QueryGrid allows users to choose the right tool for their job. SQL is the language for business and QueryGrid provides unparalleled SQL access across both commercial and open-source analytical engines. Vantage is a multi-cloud hybrid solution that solves the most difficult data problems at scale. Software that can adapt to changing customer demands by providing autonomy, visibility, as well as insights.
  • 15
    Apache Parquet Reviews

    Apache Parquet

    The Apache Software Foundation

    Parquet was created to provide the Hadoop ecosystem with the benefits of columnar, compressed data representation. Parquet was built with complex nested data structures and uses the Dremel paper's record shredding/assemblage algorithm. This approach is better than flattening nested namespaces. Parquet is designed to support efficient compression and encoding strategies. Multiple projects have shown the positive impact of the right compression and encoding scheme on data performance. Parquet allows for compression schemes to be specified per-column. It is future-proofed to allow for more encodings to be added as they are developed and implemented. Parquet was designed to be used by everyone. We don't want to play favorites in the Hadoop ecosystem.
  • 16
    Azure Databricks Reviews
    Azure Databricks allows you to unlock insights from all your data, build artificial intelligence (AI), solutions, and autoscale your Apache Spark™. You can also collaborate on shared projects with other people in an interactive workspace. Azure Databricks supports Python and Scala, R and Java, as well data science frameworks such as TensorFlow, PyTorch and scikit-learn. Azure Databricks offers the latest version of Apache Spark and allows seamless integration with open-source libraries. You can quickly spin up clusters and build in an Apache Spark environment that is fully managed and available worldwide. Clusters can be set up, configured, fine-tuned, and monitored to ensure performance and reliability. To reduce total cost of ownership (TCO), take advantage of autoscaling or auto-termination.
  • Previous
  • You're on page 1
  • Next