Best Big Data Software for iDiscover

Find and compare the best Big Data software for iDiscover in 2024

Use the comparison tool below to compare the top Big Data software for iDiscover on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Software
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 2
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 3
    MongoDB Reviews
    Top Pick
    MongoDB is a distributed database that supports document-based applications and is designed for modern application developers. No other database is more productive. Our flexible document data model allows you to ship and iterate faster and provides a unified query interface that can be used for any purpose. No matter if it's your first customer, or 20 million users worldwide, you can meet your performance SLAs in every environment. You can easily ensure high availability, data integrity, and meet compliance standards for mission-critical workloads. A comprehensive suite of cloud database services that allows you to address a wide range of use cases, including transactional, analytical, search, and data visualizations. Secure mobile apps can be launched with native, edge to-cloud sync and automatic conflicts resolution. MongoDB can be run anywhere, from your laptop to the data center.
  • 4
    SAP HANA Reviews
    SAP HANA is an in-memory database with high performance that accelerates data-driven decision-making and actions. It supports all workloads and provides the most advanced analytics on multi-model data on premise and in cloud.
  • 5
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 6
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 7
    Azure Databricks Reviews
    Azure Databricks allows you to unlock insights from all your data, build artificial intelligence (AI), solutions, and autoscale your Apache Spark™. You can also collaborate on shared projects with other people in an interactive workspace. Azure Databricks supports Python and Scala, R and Java, as well data science frameworks such as TensorFlow, PyTorch and scikit-learn. Azure Databricks offers the latest version of Apache Spark and allows seamless integration with open-source libraries. You can quickly spin up clusters and build in an Apache Spark environment that is fully managed and available worldwide. Clusters can be set up, configured, fine-tuned, and monitored to ensure performance and reliability. To reduce total cost of ownership (TCO), take advantage of autoscaling or auto-termination.
  • Previous
  • You're on page 1
  • Next