Best Data Management Software for Hadoop - Page 2

Find and compare the best Data Management software for Hadoop in 2025

Use the comparison tool below to compare the top Data Management software for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Indexima Data Hub Reviews

    Indexima Data Hub

    Indexima

    $3,290 per month
    Transform the way you view time in data analytics. With the ability to access your business data almost instantly, you can operate directly from your dashboard without the need to consult the IT team repeatedly. Introducing Indexima DataHub, a revolutionary environment that empowers both operational and functional users to obtain immediate access to their data. Through an innovative fusion of a specialized indexing engine and machine learning capabilities, Indexima enables organizations to streamline and accelerate their analytics processes. Designed for robustness and scalability, this solution allows companies to execute queries on vast amounts of data—potentially up to tens of billions of rows—in mere milliseconds. The Indexima platform facilitates instant analytics on all your data with just a single click. Additionally, thanks to Indexima's new ROI and TCO calculator, you can discover the return on investment for your data platform in just 30 seconds, taking into account infrastructure costs, project deployment duration, and data engineering expenses while enhancing your analytical capabilities. Experience the future of data analytics and unlock unprecedented efficiency in your operations.
  • 2
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    You determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency.
  • 3
    Apache Impala Reviews
    Impala offers rapid response times and accommodates numerous concurrent users for business intelligence and analytical inquiries within the Hadoop ecosystem, supporting technologies such as Iceberg, various open data formats, and multiple cloud storage solutions. Additionally, it exhibits linear scalability, even when deployed in environments with multiple tenants. The platform seamlessly integrates with Hadoop's native security measures and employs Kerberos for user authentication, while the Ranger module provides a means to manage permissions, ensuring that only authorized users and applications can access specific data. You can leverage the same file formats, data types, metadata, and frameworks for security and resource management as those used in your Hadoop setup, avoiding unnecessary infrastructure and preventing data duplication or conversion. For users familiar with Apache Hive, Impala is compatible with the same metadata and ODBC driver, streamlining the transition. It also supports SQL, which eliminates the need to develop a new implementation from scratch. With Impala, a greater number of users can access and analyze a wider array of data through a unified repository, relying on metadata that tracks information right from the source to analysis. This unified approach enhances efficiency and optimizes data accessibility across various applications.
  • 4
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment.
  • 5
    Inferyx Reviews
    Break free from the limitations of application silos, budget overruns, and outdated skills by leveraging our advanced data and analytics platform to accelerate growth. This sophisticated platform is tailored for effective data management and in-depth analytics, facilitating seamless scaling across various technological environments. Our innovative architecture is designed to comprehend the flow and transformation of data throughout its entire lifecycle. This capability supports the creation of resilient enterprise AI applications that can withstand future challenges. With a highly modular and flexible design, our platform accommodates a diverse range of components, allowing for effortless integration. Its multi-tenant architecture is specifically crafted to promote scalability. Additionally, advanced data visualization tools simplify the analysis of intricate data structures, leading to improved enterprise AI application development within an intuitive, low-code predictive environment. Built on a unique hybrid multi-cloud framework utilizing open-source community software, our platform is highly adaptable, secure, and cost-effective, making it an ideal choice for organizations seeking efficiency and innovation. Furthermore, this platform not only empowers businesses to harness their data effectively but also enhances collaboration across teams, fostering a culture of data-driven decision-making.
  • 6
    Apache Trafodion Reviews

    Apache Trafodion

    Apache Software Foundation

    Free
    Apache Trafodion serves as a webscale SQL-on-Hadoop solution that facilitates transactional or operational processes within the Apache Hadoop ecosystem. By leveraging the inherent scalability, elasticity, and flexibility of Hadoop, Trafodion enhances its capabilities to ensure transactional integrity, which opens the door for a new wave of big data applications to operate seamlessly on Hadoop. The platform supports the full ANSI SQL language, allowing for JDBC/ODBC connectivity suitable for both Linux and Windows clients. It provides distributed ACID transaction protection that spans multiple statements, tables, and rows, all while delivering performance enhancements specifically designed for OLTP workloads through both compile-time and run-time optimizations. Trafodion is also equipped with a parallel-aware query optimizer that efficiently handles large datasets, enabling developers to utilize their existing SQL knowledge and boost productivity. Furthermore, its distributed ACID transactions maintain data consistency across various rows and tables, making it interoperable with a wide range of existing tools and applications. This solution is neutral to both Hadoop and Linux distributions, providing a straightforward integration path into any existing Hadoop infrastructure. Thus, Apache Trafodion not only enhances the power of Hadoop but also simplifies the development process for users.
  • 7
    Alteryx Reviews
    Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world.
  • 8
    OpenText Analytics Database (Vertica) Reviews
    OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
  • 9
    BigID Reviews
    Data visibility and control for security, compliance, privacy, and governance. BigID's platform includes a foundational data discovery platform combining data classification and cataloging for finding personal, sensitive and high value data - plus a modular array of add on apps for solving discrete problems in privacy, security and governance. Automate scans, discovery, classification, workflows, and more on the data you need - and find all PI, PII, sensitive, and critical data across unstructured and structured data, on-prem and in the cloud. BigID uses advanced machine learning and data intelligence to help enterprises better manage and protect their customer & sensitive data, meet data privacy and protection regulations, and leverage unmatched coverage for all data across all data stores.
  • 10
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 11
    Fluentd Reviews

    Fluentd

    Fluentd Project

    Establishing a cohesive logging framework is essential for ensuring that log data is both accessible and functional. Unfortunately, many current solutions are inadequate; traditional tools do not cater to the demands of modern cloud APIs and microservices, and they are not evolving at a sufficient pace. Fluentd, developed by Treasure Data, effectively tackles the issues associated with creating a unified logging framework through its modular design, extensible plugin system, and performance-enhanced engine. Beyond these capabilities, Fluentd Enterprise also fulfills the needs of large organizations by providing features such as Trusted Packaging, robust security measures, Certified Enterprise Connectors, comprehensive management and monitoring tools, as well as SLA-based support and consulting services tailored for enterprise clients. This combination of features makes Fluentd a compelling choice for businesses looking to enhance their logging infrastructure.
  • 12
    Greenplum Reviews

    Greenplum

    Greenplum Database

    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 13
    HugeGraph Reviews
    HugeGraph is a high-performance and scalable graph database capable of managing billions of vertices and edges efficiently due to its robust OLTP capabilities. This database allows for seamless storage and querying, making it an excellent choice for complex data relationships. It adheres to the Apache TinkerPop 3 framework, enabling users to execute sophisticated graph queries using Gremlin, a versatile graph traversal language. Key features include Schema Metadata Management, which encompasses VertexLabel, EdgeLabel, PropertyKey, and IndexLabel, providing comprehensive control over graph structures. Additionally, it supports Multi-type Indexes that facilitate exact queries, range queries, and complex conditional queries. The platform also boasts a Plug-in Backend Store Driver Framework that currently supports various databases like RocksDB, Cassandra, ScyllaDB, HBase, and MySQL, while also allowing for easy integration of additional backend drivers as necessary. Moreover, HugeGraph integrates smoothly with Hadoop and Spark, enhancing its data processing capabilities. By drawing on the storage structure of Titan and the schema definitions from DataStax, HugeGraph offers a solid foundation for effective graph database management. This combination of features positions HugeGraph as a versatile and powerful solution for handling complex graph data scenarios.
  • 14
    Apache Ranger Reviews

    Apache Ranger

    The Apache Software Foundation

    Apache Ranger™ serves as a framework designed to facilitate, oversee, and manage extensive data security within the Hadoop ecosystem. The goal of Ranger is to implement a thorough security solution throughout the Apache Hadoop landscape. With the introduction of Apache YARN, the Hadoop platform can effectively accommodate a genuine data lake architecture, allowing businesses to operate various workloads in a multi-tenant setting. As the need for data security in Hadoop evolves, it must adapt to cater to diverse use cases regarding data access, while also offering a centralized framework for the administration of security policies and the oversight of user access. This centralized security management allows for the execution of all security-related tasks via a unified user interface or through REST APIs. Additionally, Ranger provides fine-grained authorization, enabling specific actions or operations with any Hadoop component or tool managed through a central administration tool. It standardizes authorization methods across all Hadoop components and enhances support for various authorization strategies, including role-based access control, thereby ensuring a robust security framework. By doing so, it significantly strengthens the overall security posture of organizations leveraging Hadoop technologies.
  • 15
    PHEMI Health DataLab Reviews
    Unlike most data management systems, PHEMI Health DataLab is built with Privacy-by-Design principles, not as an add-on. This means privacy and data governance are built-in from the ground up, providing you with distinct advantages: Lets analysts work with data without breaching privacy guidelines Includes a comprehensive, extensible library of de-identification algorithms to hide, mask, truncate, group, and anonymize data. Creates dataset-specific or system-wide pseudonyms enabling linking and sharing of data without risking data leakage. Collects audit logs concerning not only what changes were made to the PHEMI system, but also data access patterns. Automatically generates human and machine-readable de- identification reports to meet your enterprise governance risk and compliance guidelines. Rather than a policy per data access point, PHEMI gives you the advantage of one central policy for all access patterns, whether Spark, ODBC, REST, export, and more
  • 16
    Informatica Persistent Data Masking Reviews
    Maintain the essence, structure, and accuracy while ensuring confidentiality. Improve data security by anonymizing and altering sensitive information, as well as implementing pseudonymization strategies for adherence to privacy regulations and analytics purposes. The obscured data continues to hold its context and referential integrity, making it suitable for use in testing, analytics, or support scenarios. Serving as an exceptionally scalable and high-performing data masking solution, Informatica Persistent Data Masking protects sensitive information—like credit card details, addresses, and phone numbers—from accidental exposure by generating realistic, anonymized data that can be safely shared both internally and externally. Additionally, this solution minimizes the chances of data breaches in nonproduction settings, enhances the quality of test data, accelerates development processes, and guarantees compliance with various data-privacy laws and guidelines. Ultimately, adopting such robust data masking techniques not only protects sensitive information but also fosters trust and security within organizations.
  • 17
    Actian Avalanche Reviews
    Actian Avalanche is a hybrid cloud data warehouse service that is fully managed and engineered to achieve exceptional performance and scalability across various aspects, including data volume, the number of concurrent users, and the complexity of queries, all while remaining cost-effective compared to other options. This versatile platform can be implemented on-premises or across several cloud providers like AWS, Azure, and Google Cloud, allowing organizations to transition their applications and data to the cloud at a comfortable rate. With Actian Avalanche, users experience industry-leading price-performance right from the start, eliminating the need for extensive tuning and optimization typically required by database administrators. For the same investment as other solutions, users can either enjoy significantly enhanced performance or maintain comparable performance at a much lower cost. Notably, Avalanche boasts a remarkable price-performance advantage, offering up to 6 times better efficiency than Snowflake, according to GigaOm’s TPC-H benchmark, while outperforming many traditional appliance vendors even further. This makes Actian Avalanche a compelling choice for businesses seeking to optimize their data management strategies.
  • 18
    Toad Reviews
    Toad Software, offered by Quest, is a comprehensive toolset designed for database management that caters to the needs of database developers, administrators, and data analysts alike, facilitating the management of both relational and non-relational databases through SQL. By adopting a proactive stance on database management, organizations can redirect their teams toward more strategic projects and advance their business in an era increasingly defined by data. Toad's solutions are crafted to enhance the return on investment in data technology, enabling data professionals to automate tasks, mitigate risks, and significantly reduce project delivery times—often by nearly 50%. Additionally, it helps lower the overall ownership costs associated with new applications by alleviating the consequences of inefficient coding on productivity, ongoing development cycles, performance, and system availability. With millions of users relying on Toad for their most vital systems and data environments, the opportunity to achieve a competitive advantage is within reach. Embrace smarter work practices and rise to meet the challenges presented by modern database environments, ensuring your organization stays ahead of the curve.
  • 19
    Oracle Big Data Service Reviews
    Oracle Big Data Service simplifies the deployment of Hadoop clusters for customers, offering a range of VM configurations from 1 OCPU up to dedicated bare metal setups. Users can select between high-performance NVMe storage or more budget-friendly block storage options, and have the flexibility to adjust the size of their clusters as needed. They can swiftly establish Hadoop-based data lakes that either complement or enhance existing data warehouses, ensuring that all data is both easily accessible and efficiently managed. Additionally, the platform allows for querying, visualizing, and transforming data, enabling data scientists to develop machine learning models through an integrated notebook that supports R, Python, and SQL. Furthermore, this service provides the capability to transition customer-managed Hadoop clusters into a fully-managed cloud solution, which lowers management expenses and optimizes resource use, ultimately streamlining operations for organizations of all sizes. By doing so, businesses can focus more on deriving insights from their data rather than on the complexities of cluster management.
  • 20
    AdvancedMiner Reviews

    AdvancedMiner

    Algolytics Technologies

    Algolytics specializes in delivering software tools and consulting expertise focused on predictive analytics, risk management, data quality, social network analysis, and the intricate analysis of extensive datasets. Discover a versatile tool designed for data processing, analysis, and modeling! With an intuitive workflow interface, you can delve into your data and much more. The platform facilitates data extraction and storage across various database systems, files, and enables seamless data transformations. You can conduct numerous operations on your data, including sampling, merging datasets, and partitioning. AdvancedMiner presents endless capabilities for experienced users, which can be effortlessly developed or modified within the application. Additionally, it provides comprehensive support for SQL, including a variety of analytical functions, enhancing your data manipulation capabilities further. Overall, Algolytics empowers users to harness the full potential of their data efficiently.
  • 21
    IRI Voracity Reviews

    IRI Voracity

    IRI, The CoSort Company

    IRI Voracity is an end-to-end software platform for fast, affordable, and ergonomic data lifecycle management. Voracity speeds, consolidates, and often combines the key activities of data discovery, integration, migration, governance, and analytics in a single pane of glass, built on Eclipse™. Through its revolutionary convergence of capability and its wide range of job design and runtime options, Voracity bends the multi-tool cost, difficulty, and risk curves away from megavendor ETL packages, disjointed Apache projects, and specialized software. Voracity uniquely delivers the ability to perform data: * profiling and classification * searching and risk-scoring * integration and federation * migration and replication * cleansing and enrichment * validation and unification * masking and encryption * reporting and wrangling * subsetting and testing Voracity runs on-premise, or in the cloud, on physical or virtual machines, and its runtimes can also be containerized or called from real-time applications or batch jobs.
  • 22
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 23
    Promethium Reviews
    Promethium empowers data and analytics teams to enhance their efficiency, enabling them to keep pace with the increasing volumes of data and the evolving demands of the business landscape. Merely linking to a data warehouse or lake for raw data access falls short of meeting the required standards. The process of refining datasets demands considerable effort from data teams, which are not expanding at the same rate as the influx of data or the appetite for insights. By leveraging Promethium, burdened data teams can optimize their workflows, leading to faster deliveries. The platform minimizes reliance on traditional ETL processes, granting on-demand access to data in its original location. This reduction in data movement not only conserves time but also cuts costs. With Promethium, an individual can achieve in mere minutes what generally requires a team several months and multiple tools to accomplish. Users can effortlessly connect and catalog data sources, as well as create and query cross-source datasets with just a few clicks, all without needing to write any code. This significant decrease in custom coding and ETL processes allows for real-time validation of data accuracy, eliminating the delays often associated with extensive ETL efforts. Additionally, the ability to instantly share completed work fosters a culture of reuse, preventing the need for repetitive recreation of analyses. Such features not only streamline operations but also enhance collaboration among team members.
  • 24
    IBM Db2 Big SQL Reviews
    IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape.
  • 25
    Oracle Big Data SQL Cloud Service Reviews
    Oracle Big Data SQL Cloud Service empowers companies to swiftly analyze information across various platforms such as Apache Hadoop, NoSQL, and Oracle Database, all while utilizing their existing SQL expertise, security frameworks, and applications, achieving remarkable performance levels. This solution streamlines data science initiatives and facilitates the unlocking of data lakes, making the advantages of Big Data accessible to a wider audience of end users. It provides a centralized platform for users to catalog and secure data across Hadoop, NoSQL systems, and Oracle Database. With seamless integration of metadata, users can execute queries that combine data from Oracle Database with that from Hadoop and NoSQL databases. Additionally, the service includes utilities and conversion routines that automate the mapping of metadata stored in HCatalog or the Hive Metastore to Oracle Tables. Enhanced access parameters offer administrators the ability to customize column mapping and govern data access behaviors effectively. Furthermore, the capability to support multiple clusters allows a single Oracle Database to query various Hadoop clusters and NoSQL systems simultaneously, thereby enhancing data accessibility and analytics efficiency. This comprehensive approach ensures that organizations can maximize their data insights without compromising on performance or security.