Best Data Lineage Tools for Hadoop

Find and compare the best Data Lineage tools for Hadoop in 2024

Use the comparison tool below to compare the top Data Lineage tools for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 2
    PHEMI Health DataLab Reviews
    Unlike most data management systems, PHEMI Health DataLab is built with Privacy-by-Design principles, not as an add-on. This means privacy and data governance are built-in from the ground up, providing you with distinct advantages: Lets analysts work with data without breaching privacy guidelines Includes a comprehensive, extensible library of de-identification algorithms to hide, mask, truncate, group, and anonymize data. Creates dataset-specific or system-wide pseudonyms enabling linking and sharing of data without risking data leakage. Collects audit logs concerning not only what changes were made to the PHEMI system, but also data access patterns. Automatically generates human and machine-readable de- identification reports to meet your enterprise governance risk and compliance guidelines. Rather than a policy per data access point, PHEMI gives you the advantage of one central policy for all access patterns, whether Spark, ODBC, REST, export, and more
  • 3
    Secuvy AI Reviews
    Secuvy, a next-generation cloud platform, automates data security, privacy compliance, and governance via AI-driven workflows. Unstructured data is treated with the best data intelligence. Secuvy, a next-generation cloud platform that automates data security, privacy compliance, and governance via AI-driven workflows is called Secuvy. Unstructured data is treated with the best data intelligence. Automated data discovery, customizable subjects access requests, user validations and data maps & workflows to comply with privacy regulations such as the ccpa or gdpr. Data intelligence is used to locate sensitive and private information in multiple data stores, both in motion and at rest. Our mission is to assist organizations in protecting their brand, automating processes, and improving customer trust in a world that is rapidly changing. We want to reduce human effort, costs and errors in handling sensitive data.
  • 4
    AnalyticsCreator Reviews
    AnalyticsCreator lets you extend and adjust an existing DWH. It is easy to build a solid foundation. The reverse engineering method of AnalyticsCreator allows you to integrate code from an existing DWH app into AC. So, more layers/areas are included in the automation. This will support the change process more extensively. The extension of an manually developed DWH with an ETL/ELT can quickly consume resources and time. Our experience and studies found on the internet have shown that the longer the lifecycle the higher the cost. You can use AnalyticsCreator to design your data model and generate a multitier data warehouse for your Power BI analytical application. The business logic is mapped at one place in AnalyticsCreator.
  • 5
    Kylo Reviews
    Kylo is an enterprise-ready open-source data lake management platform platform for self-service data ingestion and data preparation. It integrates metadata management, governance, security, and best practices based on Think Big's 150+ big-data implementation projects. Self-service data ingest that includes data validation, data cleansing, and automatic profiling. Visual sql and an interactive transformation through a simple user interface allow you to manage data. Search and explore data and metadata. View lineage and profile statistics. Monitor the health of feeds, services, and data lakes. Track SLAs and troubleshoot performance. To enable user self-service, create batch or streaming pipeline templates in Apache NiFi. While organizations can spend a lot of engineering effort to move data into Hadoop, they often struggle with data governance and data quality. Kylo simplifies data ingest and shifts it to data owners via a simple, guided UI.
  • 6
    Apache Atlas Reviews

    Apache Atlas

    Apache Software Foundation

    Atlas is a flexible and extensible set core foundational governance services that enable enterprises to efficiently and effectively meet their compliance requirements within Hadoop. It also allows integration with the entire enterprise data ecosystem. Apache Atlas offers open metadata management and governance capabilities that allow organizations to create a catalog of their data assets, classify, govern and provide collaboration capabilities around these assets for data scientists, analysts, and the data governance group. Pre-defined types to manage various Hadoop and non Hadoop metadata. Ability to create new types to manage metadata. Types can inherit from other types, and can have simple attributes, complex attributes, and object references. Type instances, also known as entities, are able to capture metadata object details and their relationships. REST APIs allow for easier integration with types and instances.
  • Previous
  • You're on page 1
  • Next