Best Data Pipeline Software for Hadoop

Find and compare the best Data Pipeline software for Hadoop in 2025

Use the comparison tool below to compare the top Data Pipeline software for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    IBM StreamSets Reviews

    IBM StreamSets

    IBM

    $1000 per month
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 2
    Dataplane Reviews
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 3
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    Yandex Data Proc creates and configures Spark clusters, Hadoop clusters, and other components based on the size, node capacity and services you select. Zeppelin Notebooks and other web applications can be used to collaborate via a UI Proxy. You have full control over your cluster, with root permissions on each VM. Install your own libraries and applications on clusters running without having to restart. Yandex Data Proc automatically increases or decreases computing resources for compute subclusters according to CPU usage indicators. Data Proc enables you to create managed clusters of Hive, which can reduce failures and losses due to metadata not being available. Save time when building ETL pipelines, pipelines for developing and training models, and describing other iterative processes. Apache Airflow already includes the Data Proc operator.
  • 4
    Integrate.io Reviews
    Unify Your Data Stack: Experience the first no-code data pipeline platform and power enlightened decision making. Integrate.io is the only complete set of data solutions & connectors for easy building and managing of clean, secure data pipelines. Increase your data team's output with all of the simple, powerful tools & connectors you’ll ever need in one no-code data integration platform. Empower any size team to consistently deliver projects on-time & under budget. Integrate.io's Platform includes: -No-Code ETL & Reverse ETL: Drag & drop no-code data pipelines with 220+ out-of-the-box data transformations -Easy ELT & CDC :The Fastest Data Replication On The Market -Automated API Generation: Build Automated, Secure APIs in Minutes - Data Warehouse Monitoring: Finally Understand Your Warehouse Spend - FREE Data Observability: Custom Pipeline Alerts to Monitor Data in Real-Time
  • 5
    Unravel Reviews
    Unravel makes data available anywhere: Azure, AWS and GCP, or in your own datacenter. Optimizing performance, troubleshooting, and cost control are all possible with Unravel. Unravel allows you to monitor, manage and improve your data pipelines on-premises and in the cloud. This will help you drive better performance in the applications that support your business. Get a single view of all your data stack. Unravel gathers performance data from every platform and system. Then, Unravel uses agentless technologies to model your data pipelines end-to-end. Analyze, correlate, and explore all of your cloud and modern data. Unravel's data models reveal dependencies, issues and opportunities. They also reveal how apps and resources have been used, and what's working. You don't need to monitor performance. Instead, you can quickly troubleshoot issues and resolve them. AI-powered recommendations can be used to automate performance improvements, lower cost, and prepare.
  • 6
    Azkaban Reviews
    Azkaban is a distributed Workflow Manager that LinkedIn created to address the problem of Hadoop job dependencies. There were many jobs that had to be run in order, including ETL jobs and data analytics products. We now offer two modes after version 3.0: the standalone "solo-server" mode or the distributed multiple-executor mod. Below are the differences between these two modes. Solo server mode uses embedded H2 DB and both web server (and executor server) run in the same process. This is useful for those who just want to test things. You can also use it for small-scale applications. Multiple executor mode is best for serious production environments. Its DB should have master-slave MySQL instances backing it. The web server and executor servers should be run on different hosts to ensure that users don't have to worry about upgrading or maintenance. Azkaban is made stronger and more scalable by this multi-host setup.
  • 7
    BigBI Reviews
    BigBI allows data specialists to create their own powerful Big Data pipelines interactively and efficiently, without coding! BigBI unleashes Apache Spark's power, enabling: Scalable processing of Big Data (upto 100X faster). Integration of traditional data (SQL and batch files) with new data Sources include semi-structured data (JSON, NoSQL DBs and Hadoop) as well as unstructured data (text, audio, video). Integration of streaming data and cloud data, AI/ML graphs & graphs
  • Previous
  • You're on page 1
  • Next