Best Data Management Software for Google Compute Engine

Find and compare the best Data Management software for Google Compute Engine in 2025

Use the comparison tool below to compare the top Data Management software for Google Compute Engine on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,297 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    New Relic Reviews
    Top Pick
    See Software
    Learn More
    Around 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability.
  • 3
    Vertex AI Reviews

    Vertex AI

    Google

    Free ($300 in free credits)
    666 Ratings
    See Software
    Learn More
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 4
    Sedai Reviews

    Sedai

    Sedai

    $10 per month
    Sedai intelligently finds resources, analyzes traffic patterns and learns metric performance. This allows you to manage your production environments continuously without any manual thresholds or human intervention. Sedai's Discovery engine uses an agentless approach to automatically identify everything in your production environments. It intelligently prioritizes your monitoring information. All your cloud accounts are on the same platform. All of your cloud resources can be viewed in one place. Connect your APM tools. Sedai will identify and select the most important metrics. Machine learning intelligently sets thresholds. Sedai is able to see all the changes in your environment. You can view updates and changes and control how the platform manages resources. Sedai's Decision engine makes use of ML to analyze and comprehend data at large scale to simplify the chaos.
  • 5
    Google Cloud Pub/Sub Reviews
    Google Cloud Pub/Sub offers a robust solution for scalable message delivery, allowing users to choose between pull and push modes. It features auto-scaling and auto-provisioning capabilities that can handle anywhere from zero to hundreds of gigabytes per second seamlessly. Each publisher and subscriber operates with independent quotas and billing, making it easier to manage costs. The platform also facilitates global message routing, which is particularly beneficial for simplifying systems that span multiple regions. High availability is effortlessly achieved through synchronous cross-zone message replication, coupled with per-message receipt tracking for dependable delivery at any scale. With no need for extensive planning, its auto-everything capabilities from the outset ensure that workloads are production-ready immediately. In addition to these features, advanced options like filtering, dead-letter delivery, and exponential backoff are incorporated without compromising scalability, which further streamlines application development. This service provides a swift and dependable method for processing small records at varying volumes, serving as a gateway for both real-time and batch data pipelines that integrate with BigQuery, data lakes, and operational databases. It can also be employed alongside ETL/ELT pipelines within Dataflow, enhancing the overall data processing experience. By leveraging its capabilities, businesses can focus more on innovation rather than infrastructure management.
  • 6
    Graph Story Reviews

    Graph Story

    Graph Story

    $299 per month
    Organizations that choose a do-it-yourself method for implementing a graph database should anticipate a timeline of about 2 to 3 months to achieve a production-ready state. In contrast, with Graph Story’s managed services, your operational database can be set up in just minutes. Discover various graph use cases and explore a side-by-side analysis of self-hosting versus managed services. We can accommodate deployments in your existing infrastructure, whether it's on AWS, Azure, or Google Compute Engine, in any geographical location. If you require VPC peering or IP access restrictions, we can easily adapt to your needs. For those looking to create a proof of concept, initiating a single enterprise graph instance only takes a few clicks. Should you need to scale up to a high-availability, production-ready cluster on demand, we are prepared to assist! Our graph database management tools are designed to simplify your experience, allowing you to monitor CPU, memory, and disk usage effortlessly. You also have access to configurations, logs, and the ability to backup your database and restore snapshots whenever necessary. This level of flexibility ensures that your graph database management aligns perfectly with your operational requirements.
  • 7
    Google Cloud Migrate for Compute Engine Reviews
    The process of cloud migration raises numerous inquiries. Migrate for Compute Engine, a solution by Google Cloud, addresses these concerns effectively. Whether you aim to transfer a single application from your local servers or a thousand high-capacity applications across various data centers, Migrate for Compute Engine empowers IT teams of any size to shift their workloads seamlessly to Google Cloud. Its straightforward “as a service” interface within the Cloud Console, combined with adaptable migration options, simplifies the process, enabling users to significantly reduce the time and effort usually associated with migrations. Say goodbye to complicated setups, intricate configurations, and the confusion of client-side migration tools. By choosing the appropriate migration solution, your team can focus their energy on what truly counts: the successful transfer of workloads to the cloud. Ultimately, this tool not only streamlines the migration process but also enhances overall productivity and efficiency for IT teams.
  • 8
    Google Cloud Memorystore Reviews
    Enhance performance by utilizing a scalable, secure, and highly available in-memory service tailored for Redis and Memcached. Memorystore simplifies complex procedures associated with open source Redis and Memcached, such as ensuring high availability, managing failover, conducting patching, and monitoring, allowing developers to focus more on coding. You can begin with the most basic tier and smallest configuration, gradually expanding your instance with minimal disruption. Memorystore for Memcached has the capacity to manage clusters up to 5 TB, delivering millions of queries per second at remarkably low latency. In contrast, Memorystore for Redis instances are designed to be replicated across two zones, offering a service level agreement of 99.9% availability. Continuous monitoring and automatic failover mechanisms ensure that applications face minimal interruptions. You can select from two of the most widely used open source caching solutions to develop your applications. Memorystore provides full protocol compatibility for both Redis and Memcached, enabling you to choose the caching engine that best aligns with your budget and availability needs while maximizing your application's performance. By leveraging these features, developers can significantly improve their operational efficiency.
  • Previous
  • You're on page 1
  • Next